Question about Factoring Equation

  • Thread starter Thread starter optics.tech
  • Start date Start date
  • Tags Tags
    Factoring
optics.tech
Messages
79
Reaction score
1
Hi,

I use the \frac{-b \ \pm \ \sqrt{b^2 - 4ac}}{2a} formula to factoring the quadratic equation. Can anyone tell me how to factoring the cubic equation? Usually I use the division method to factoring higher order than quadratic equation such as cubic, etc., by trial, one-by-one.

Cheers http://img395.imageshack.us/img395/7776/cheers.gif
 
Last edited by a moderator:
Mathematics news on Phys.org
Well, use the cubic formula, of course! Just as you can use the quadratic formula to solve any quadratic equation, so you can use the cubic formula to solve any cubic equation and then the factors are D(x- a)(x- b)(x- c) where a, b, c are to roots of the equation.

Look at http://en.wikipedia.org/wiki/Cubic_equation#Cardano.27s_method

Needless to say, it is considerably harder than the quadratic formula. There is also a formula for solving fourth order equations but it is even harder- in part it involves reducing to a cubic equation and using Cardano's formula. There is no formula for polynomial equations of degree higher than 4. It was proved in the nineteenth century that there exist such equations whose solutions cannot be written in terms of radicals.
 
The quoted pages may look a bit formidable to you.
The way I remember it and could always construct a solution if needed is: just as you solve a quadratic by "completing the square" - i.e. by expressing it as the difference of two squares, then the solution of that difference = 0 is one square equals the other... you know the rest, so you try to express the cubic as difference of two cubes. You find that in order to do that you are led to have to solve a quadratic equation.

You find that if the cubic equation has 3 real roots you will need to use the nonreal complex roots of that quadratic to get them. They could find no way not to use these, so that led to the discovery that square roots of negative numbers are not just a silly answer to a silly question but something serious, useful and it turned out, inevitable. I.e. it was hoped to find some way to solve using just real numbers but it was proved this would be impossible. I don't know how elementary and accessible that last bit is and am curious.

Anyway the point is that what looks like a specialised problem, solving the cubic, turns out to lead to one of the most important things in mathematics, also surely one of the key steps in the process of abstraction in maths. The ideas and calculation for solving the cubic and quartic are really less difficult and more natural than the formidable-looking formulae would lead you to think.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
19
Views
3K
Replies
2
Views
1K
Replies
2
Views
1K
Replies
3
Views
1K
Replies
16
Views
4K
Replies
2
Views
2K
Replies
12
Views
2K
Replies
8
Views
3K
Back
Top