Question about Normed Linear Spaces

  • Thread starter Thread starter Oster
  • Start date Start date
  • Tags Tags
    Linear
Oster
Messages
84
Reaction score
0
Statement: V is a finite dimensional vector space with basis {ei} (i goes from 1 to n). V has a norm || || defined on it(not necessarily induced by an inner product). Let x=Ʃxiei belong to V. I want to show that ||x|| ≥ ||xiei|| for any fixed i.

I'm not entirely sure this result is correct. But i remember seeing something similar in a text a while ago.
I know all the properties of a norm but I'm not sure how to proceed. I don't know how the independence of the basis vectors will fit into the proof.
 
Physics news on Phys.org
It isn't true. In ##R^2## consider the basis ##e_1=<1,0>,\ e_2=<-1,.1>##. Then let ##x=1e_1+1e_2=<0,.1>##. Then ##\|x\|=.1<1\|e_1\|##.
 
Thank you!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top