What Is the Power Series and Interval of Convergence for f(x) = x/(x^2 + 1)?

AI Thread Summary
The discussion focuses on finding the power series for the function f(x) = x/(x^2 + 1) and determining its interval of convergence. The approach involves rewriting the function and applying the geometric series formula, leading to a series expansion. The ratio test is suggested to establish the radius of convergence, with emphasis on checking the boundary cases. Participants share methods for calculating derivatives and evaluating the series at specific points. The conversation concludes with a participant expressing clarity on the steps needed to solve the problem.
vande060
Messages
180
Reaction score
0

Homework Statement



find the power series for the function and determine the interval of convergence

<br /> f(x) = {{x} \over {x^2 +1}} <br />

im trying latex for the first time so here it is if it doesn't show well: f(x) = x/(x^2 + 1)

Homework Equations


The Attempt at a Solution



<br /> f(x) = \frac{\x}{2x^2 + 1} <br />

f(x) = x/(x^2 + 1)f(x) = x/(2x^2 ( 1/2x^2 + 1) )
f(x) = x/(2x^2 ( 1 - -1/2x^2 ) ) <br /> = \frac{x}{2x^2} \sum_{n=1}^{\infty} <br /> (-1/(2x^2))^n

<br /> \sum_{n=1}^{\infty} <br /> ((-1)^n x)/(2x^2)^(n+1)

once I take the limit though by using the ratio test i get 1/16x^8
 
Last edited:
Physics news on Phys.org
I would find the power series for 1/(x^2+1) then multiply each term by x, then look at it and write the summation notation.

f(x)= f(0)+f '(0)*x +f ''(0)*x^2/2 + f '''(0)*x^3/6 +...

f(x) = (x^2+1)^-1
f '(x) = - 2x*(x^2+1)^-2
f'' (x) = -2x*-2*2x*(x^2+1)^-3 + (x^2+1)^-2*-2

f(0) = (0+1)^-1 = 1
f'(0) = 0
f''(0) = 0 -2*(1^-2) = -2

f(x), centered at 0 for 1/(x^2+1) = 1-x^2+...(I'll leave a couple more terms for you so you can see the pattern), then multiply through by x.

OR, if you've got some intuition, you could note that a/(1-r) is the sum of a geometric series for abs(r)<1, then you'd write: 1-x^2+...(still going to leave those terms for you), the multiply through by x.

You can probably write the summation by looking at the pattern of the terms.

Then you can apply the ratio test, or note from the geometric series that abs(r)<1...to get the radius of convergence. Don't forget to also check the =1 case.
 
Apphysicist said:
I would find the power series for 1/(x^2+1) then multiply each term by x, then look at it and write the summation notation.

f(x)= f(0)+f '(0)*x +f ''(0)*x^2/2 + f '''(0)*x^3/6 +...

f(x) = (x^2+1)^-1
f '(x) = - 2x*(x^2+1)^-2
f'' (x) = -2x*-2*2x*(x^2+1)^-3 + (x^2+1)^-2*-2

f(0) = (0+1)^-1 = 1
f'(0) = 0
f''(0) = 0 -2*(1^-2) = -2

f(x), centered at 0 for 1/(x^2+1) = 1-x^2+...(I'll leave a couple more terms for you so you can see the pattern), then multiply through by x.

OR, if you've got some intuition, you could note that a/(1-r) is the sum of a geometric series for abs(r)<1, then you'd write: 1-x^2+...(still going to leave those terms for you), the multiply through by x.

You can probably write the summation by looking at the pattern of the terms.

Then you can apply the ratio test, or note from the geometric series that abs(r)<1...to get the radius of convergence. Don't forget to also check the =1 case.


okay I understand what I have to do now thank you
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top