Question about the photoelectric effect

AI Thread Summary
The discussion centers on the efficiency of photodiodes in relation to the photoelectric effect, specifically questioning why photodiodes are not 100% efficient. It highlights that not all photons can cause electron emission, particularly if their wavelength is insufficient or if they miss electrons entirely. The work function of a metal may vary depending on the electron's position within the material. Additionally, photons can be absorbed by the lattice instead of causing emission, dissipating energy as heat. Understanding quantum efficiency is crucial to grasping these concepts fully.
Dima Petrukhin
Messages
10
Reaction score
0
1. The question asks why the photodiode is less than 100% efficient.2. hf=work function+KEmax


3.- I reckon this is as some light will not cause e to be emitted if the wavelength of the light is less the needed.
-Or some photons will not hit any electron.

Is this correct?
Thinking about this question got me wondering if the work function may vary in a metal depending on how 'deep' the electron is in the metal?

And is it possible for a single photon to go through the metal without hitting an electron and not causing emission?

Thanks
 
Physics news on Phys.org
I should say how close the electrons are to +ve metal ions
 
You say "photodiode" but you are describing the photoelectric effect. In a photodiode incoming photons create electron-hole pairs which are then detected as a current. This is not described by the equation hf=work function+KEmax.
Dima Petrukhin said:
And is it possible for a single photon to go through the metal without hitting an electron and not causing emission?
A single photon that does not cause emission does not have to go "through" the material. The photon's energy may be absorbed by the lattice and be dissipated as heat. Read about quantum efficiency here https://en.wikipedia.org/wiki/Quantum_efficiency.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top