yungman
- 5,741
- 294
I am referring to the book "Introduction to Electrodynamics" by Griffiths p317, Energy in magnetic field.
\Phi = \int_S \vec B \cdot d \vec a = \int_C \vec A \cdot d \vec l
LI = \int_C \vec A \cdot d \vec l
But the inductance in defined as the flux linkage divid by the current that create the flux or:
L = \frac {\Lambda}{I}
If the inductor is N turn, \Lambda = N\Phi
I want to verify according to the book that:
LI = \int_C \vec A \cdot d \vec l \Rightarrow W = \frac {1}{2} I \int_C \vec A \cdot d \vec l \Rightarrow W = \frac {1}{\mu_0}[\int_v B^2 d \tau - \int_S (\vec A X \vec B) \cdot d\vec a]
Only apply to a single loop inductor or a straight wire type that N=1. Because for multi turn N inductor, \Lambda = N\Phi
\Phi = \int_S \vec B \cdot d \vec a = \int_C \vec A \cdot d \vec l
LI = \int_C \vec A \cdot d \vec l
But the inductance in defined as the flux linkage divid by the current that create the flux or:
L = \frac {\Lambda}{I}
If the inductor is N turn, \Lambda = N\Phi
I want to verify according to the book that:
LI = \int_C \vec A \cdot d \vec l \Rightarrow W = \frac {1}{2} I \int_C \vec A \cdot d \vec l \Rightarrow W = \frac {1}{\mu_0}[\int_v B^2 d \tau - \int_S (\vec A X \vec B) \cdot d\vec a]
Only apply to a single loop inductor or a straight wire type that N=1. Because for multi turn N inductor, \Lambda = N\Phi