Quick help with graphing something on the TI

  • Thread starter Thread starter mathzeroh
  • Start date Start date
  • Tags Tags
    Graphing
AI Thread Summary
To solve the equation 5(2)^t=5000 using a TI calculator, users can utilize either the TABLE feature or a graphing approach. The correct way to input the equation for graphing is y=5(2)^x - 5000, where finding the x-intercept will yield the solution. The estimated solution is approximately 9.97, aligning with the algebraic method. While the TABLE feature lists corresponding x and y values, specific instructions for using it on a TI-83 were not provided in the discussion. Overall, the conversation emphasizes the importance of understanding calculator functionalities for solving exponential equations.
mathzeroh
Messages
98
Reaction score
0
ok so the point of this was to solve the problems using one of three methods:

Directions for problems #13-26: Use your calculator to estimate the solution accurate to 2 decimal places. Try one of the following methods: 1) guess and check on the homescreen (LONG AND TEDIUS! forget this way! :zzz: ) 2) use the TABLE feature or 3) use a graphing approach.
15. 5(2)^t=5000

ok so i got the answer algebraically however i don't know how the heck I'm going to get that answer using the "TABLE feature" or the "graphing approach."??

how would u even insert that into the grapher?

would you put it into the calculator like this?:
y= 5(2)^X-5000
 
Last edited:
Physics news on Phys.org
Yes. Find the x-intercept of y = 5(2)^x - 5000, or, equivalently, of y = 2^x - 1000.
 
Last edited:
Data said:
Yes. Find the x-intercept of y = 5(2)^x - 5000.
so basically, when y=0, that's what i have to figure out? :confused:


ok so i got that, it would be about 9.97 which is approximately what i got using the algebraic method, however, how would you do this using the table feature? :rolleyes:

THANK YOU BTW! :biggrin:
 
I don't have a TI-83, so I can't help you with that one :)

I imagine it is some sort of feature that lists values of x and corresponding values of y.
 
Data said:
I don't have a TI-83, so I can't help you with that one :)

I imagine it is some sort of feature that lists values of x and corresponding values of y.

yea that's correct...well u've helped out a lot man! thanks! :cool:
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top