Raising a bunch of matrices to a power

  • Thread starter Thread starter sjeddie
  • Start date Start date
  • Tags Tags
    Matrices Power
sjeddie
Messages
18
Reaction score
0
Let A, B, and C be nxn matrices,
I'm wondering
1. is it possible to simplify (ABC)^5 to expand it ( maybe into something like (A^5)(B^5)(C^5) )
2. what's the fastest way of solving (ABC)^5? I'm thinking actually multiply ABC out, then diagonalize it. Is there a faster way?
 
Physics news on Phys.org
sjeddie said:
Let A, B, and C be nxn matrices,
I'm wondering
1. is it possible to simplify (ABC)^5 to expand it ( maybe into something like (A^5)(B^5)(C^5) )
Under certain conditions. If A, B and C commute among themselves (that is, AB = BA, AC = CA and BC = CB) then this is possible.

sjeddie said:
2. what's the fastest way of solving (ABC)^5? I'm thinking actually multiply ABC out, then diagonalize it. Is there a faster way?

I'm thinking the same thing. Alternatively you could try writing down an expression in terms of A^5, B^5, C^5 and the commutators [A, B] = AB - BA, [A, C] = AC - CA and [B, C] = BC - CB, e.g.
(A B C)^2 = A B C A B C
... = A B A C B C + A B [C, A] B C
... = A^2 B C B C + A [B, A] C B C + A B [C, A] B C
... = A^2 B^2 C^2 - A^2 B [B, C] C - A [A, B] C B C - A B [A, C] B C

But that is in general ugly and not very helpful.
 
Thank you CompuChip
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top