MHB Rank of the product of two matrices

aukie
Messages
1
Reaction score
0
Hello

Both of the below theorems are listed as properties 6 and 7 on the wikipedia page for the rank of a matrix.

I want to prove the following,

If A is an M by n matrix and B is a square matrix of rank n, then rank(AB) = rank(A).

Apparently this is a corollary to the theorem
If A and B are two matrices which can be multiplied, then rank(AB) <= min( rank(A), rank(B) ).

which I know how to prove. But I can't prove the first theorem. Any ideas? I would especially like to see how it is a corollary to the second theorem which the author in the book I am reading claims. Thanks for reading
 
Physics news on Phys.org
aukie said:
I want to prove the following,

If A is an M by n matrix and B is a square matrix of rank n, then rank(AB) = rank(A).

Apparently this is a corollary to the theorem
If A and B are two matrices which can be multiplied, then rank(AB) <= min( rank(A), rank(B) ).
You want to prove that if A is an M by n matrix and B is an n by n matrix of rank n, then rank(AB) = rank(A). But an n by n matrix of rank n is necessarily invertible. So $B$ has an inverse $B^{-1}$. It follows from the theorem that $\text{rank}(A) = \text{rank}((AB)B^{-1}) \leqslant \text{rank}(AB).$ The reverse inequality $\text{rank}(AB)\leqslant \text{rank}(A)$ follows directly from the theorem. Hence $\text{rank}(AB)= \text{rank}(A).$
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Back
Top