Rat Running on Ice: Solutions & Tips

In summary,The homework statement states that there is no tangential acceleration, only normal acceleration, given by ν2/R. However, the author does not understand what the radius of the curve is, as rat is moving along a straight line before and after the turn. The maximum static frictional force on rat is μmg, and to move in a circle at speed v, the rat must exert a force equal to μmg times its mass, which is a multiple of its mass. To find the radius of the curve, the author goes to post 2.
  • #1
Vibhor
971
40

Homework Statement



?temp_hash=1313a5916ced80c92176565eac655302.png


Homework Equations

The Attempt at a Solution



There is no tangential acceleration , only normal acceleration ,given by ν2/R .But I do not understand what is the radius of the curve since rat is moving along straight line before and after the turn (I think that is the case ) . The maximum static frictional force on rat is μmg .

How should I proceed with the problem .

Thanks
 

Attachments

  • problem.PNG
    problem.PNG
    5.7 KB · Views: 271
Physics news on Phys.org
  • #2
Given the coefficient of friction you can express the maximum force the rat can exert to change direction, as a multiple of its mass. If it exerts that force constantly to its left until it has turned 90 degrees to the right, the force has generated a centripetal acceleration throughout that right turn. Find the radius at which that is the required centripetal acceleration to move in a circle at speed v. From there you should be able to work out the time taken.
 
  • Like
Likes Vibhor
  • #3
andrewkirk said:
Given the coefficient of friction you can express the maximum force the rat can exert to change direction, as a multiple of its mass.
Isn't the maximum force = μmg ?
 
  • #4
Vibhor said:
Isn't the maximum force = μmg ?
Yes, and that's ##(\mu g)\times m##, which is a multiple of the mass.
 
  • #5
andrewkirk said:
the force has generated a centripetal acceleration throughout that right turn. Find the radius at which that is the required centripetal acceleration to move in a circle at speed v.

How to find the circle and hence the radius ? Rat hasn't moved on a curve ,it made a sharp 90° turn while moving in a straight line ( I suppose) .
 
  • #6
Vibhor said:
Rat hasn't moved on a curve ,it made a sharp 90° turn while moving in a straight line ( I suppose) .
That's not what the question means. It says the rat 'suddenly decides to turn', not that the rat 'suddenly turns'. The sudden-ness means there is a discontinuity in the second derivative of position (acceleration), not the first (velocity). So the rat is traveling in a straight line, then suddenly starts curving (say) right in the tightest circle it can manage without slipping, until it has turned 90 degrees, at which point it (suddenly) stops curving and continues on in a (new) straight line. The circle they're asking about is the quarter-circle path the rat follows while executing that change of direction.
 
  • Like
Likes Vibhor
  • #7
andrewkirk said:
That's not what the question means. It says the rat 'suddenly decides to turn', not that the rat 'suddenly turns'. The sudden-ness means there is a discontinuity in the second derivative of position (acceleration), not the first (velocity). So the rat is traveling in a straight line, then suddenly starts curving (say) right in the tightest circle it can manage without slipping, until it has turned 90 degrees, at which point it (suddenly) stops curving and continues on in a (new) straight line.

Ok .

Now , how should I find the radius of the curve ?
 
  • #9
Ok
 
Last edited:
  • #10
How should I find the least distance covered by mice while making the turn such that time taken is minimum ?
 
  • #11
Vibhor said:
How should I find the least distance covered by mice while making the turn such that time taken is minimum ?
What have you found so far?

Did you find the radius?
 
  • #12
SammyS said:
Did you find the radius?

If I consider the curve to be a quarter circle ,then that does solve the problem . But this is what I do not understand , why the curve traced by rat should be a part of a circle ?
 
  • #13
Vibhor said:
If I consider the curve to be a quarter circle ,then that does solve the problem . But this is what I do not understand , why the curve traced by rat should be a part of a circle ?
No sudden change of direction can happen. And any tiny part of a curve can be replaced by a circle. And friction allows a certain radius or greater. The speed is given, so the turn takes the shortest time if the radius is the shortest. The shortest radius along the whole path... it is a quarter circle, is not it?
 
  • Like
Likes Vibhor
  • #14
ehild said:
The speed is given, so the turn takes the shortest time if the radius is the shortest. The shortest radius along the whole path... it is a quarter circle, is not it?

How would circular path ensure minimum distance ? Why can't it be any other curve ?
 
  • #15
THey want to change direction in minimum time. So they push sideways as hard as they can without slipping. THe limit to how hard they can push is fixed by their weight and the friction coefficient. So they push sideways at a constant rate of that fixed limit until their direction has changed by 90 degrees. A constant acceleration perpendicular to the direction of motion causes a body to move along an arc of a circle.

By the way, the rat may be able to change direction in a shorter distance and/or time by pushing against the direction of motion until it comes to a stop, then turning 90 degrees on the spot and setting off again. But this is forbidden by the requirement in the OP question that the speed remain constant. That in turn requires that any pushing must be perpendicular to the direction of motion.
 
  • Like
Likes Vibhor
  • #16
Vibhor said:
If I consider the curve to be a quarter circle ,then that does solve the problem . But this is what I do not understand , why the curve traced by rat should be a part of a circle ?
You yourself noted that the tangential acceleration is zero (the result of constant speed).

If you want the change in direction to occur in min. time, then it follows that the radial (normal, in this case) acceleration is a maximum, which is a constant value. Thus you have circular motion - for a portion of a circle.

Right?

(Is ehild awake and doing PF so early in the morning? Time for me to go to sleep!)
 
  • Like
Likes Vibhor
  • #17
Vibhor said:
How would circular path ensure minimum distance ? Why can't it be any other curve ?
Read my previous post again. Any tiny part of a curve can be replaced by an arc of circle. For shortest time, you need the shortest arc. The minimum radius of that short arc of circle is determined by the speed and the coefficient of the friction. The next short arc has to be of the same radius. The next one too. A curve with parts all of the same radius is a circle.
 
  • Like
Likes Vibhor
  • #18
SammyS said:
(Is ehild awake and doing PF so early in the morning? Time for me to go to sleep!)
We must live about a quarter arc away on the Earth.
I get up at 6 usually, have my coffee and read PF. :smile:
 
  • #19
ehild said:
Read my previous post again. Any tiny part of a curve can be replaced by an arc of circle. For shortest time, you need the shortest arc. The minimum radius of that short arc of circle is determined by the speed and the coefficient of the friction. The next short arc has to be of the same radius. The next one too. A curve with parts all of the same radius is a circle.
As Andrew noted, the minimum time requirement does not of itself lead to a circular arc. First, you have to deduce that the acceleration must at all times be normal to the direction of travel in order to comply with the constant speed condition. Then, minimum time implies maximum normal acceleration, which implies constant magnitude.
Indeed, if the constant speed condition is removed then the quickest is to come to a stop as soon as possible.
The condition could be relaxed to "moving at the original speed but at 90 degrees to the original direction as quickly as possible". That would still lead to a circular arc, I believe, but it might be harder to prove that.
 
  • Like
Likes Vibhor
  • #20
andrewkirk said:
THey want to change direction in minimum time. So they push sideways as hard as they can without slipping. THe limit to how hard they can push is fixed by their weight and the friction coefficient. So they push sideways at a constant rate of that fixed limit until their direction has changed by 90 degrees. A constant acceleration perpendicular to the direction of motion causes a body to move along an arc of a circle.

By the way, the rat may be able to change direction in a shorter distance and/or time by pushing against the direction of motion until it comes to a stop, then turning 90 degrees on the spot and setting off again. But this is forbidden by the requirement in the OP question that the speed remain constant. That in turn requires that any pushing must be perpendicular to the direction of motion.

Excellent explanation andrew :smile: . Very nice !
 

1. What is "rat running on ice" and why is it important?

"Rat running on ice" is a term used to describe the behavior of a rat trying to navigate on a smooth, slippery surface. It is important because it can help us understand how animals adapt to different environments and how they use their skills and instincts to survive.

2. What are some solutions for a rat trying to run on ice?

There are several solutions for a rat trying to run on ice. One solution is to create a rough surface for the rat to grip onto, such as sprinkling sand or gravel on the ice. Another solution is to provide the rat with shoes or socks that have a good grip on the ice. Additionally, a heated surface can help melt the ice and make it easier for the rat to navigate.

3. Can rats adapt to running on ice?

Yes, rats are highly adaptable animals and can learn to navigate on ice with practice. They have sharp claws and good balance, which can help them grip onto the surface. They also have the ability to learn from trial and error, so with time and practice, they can become more skilled at running on ice.

4. How can we prevent rats from running on ice in our homes?

To prevent rats from running on ice in our homes, we can make sure to keep our floors clean and dry, as rats are attracted to food and water sources. We can also seal any cracks or openings that rats could use to enter our homes. Additionally, using deterrents like peppermint oil or ultrasonic devices can help keep rats away.

5. Are there any risks for rats running on ice?

Yes, there are some risks for rats running on ice. They could slip and fall, which could result in injury. They could also struggle to find food and water sources on the ice, which could lead to starvation or dehydration. It is important to provide the rats with a safe and suitable environment to prevent these risks.

Similar threads

  • Introductory Physics Homework Help
Replies
2
Views
2K
  • Introductory Physics Homework Help
Replies
7
Views
2K
  • Introductory Physics Homework Help
Replies
22
Views
2K
  • Introductory Physics Homework Help
Replies
7
Views
904
  • Introductory Physics Homework Help
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
24
Views
1K
  • Introductory Physics Homework Help
Replies
9
Views
2K
  • Introductory Physics Homework Help
Replies
6
Views
1K
Replies
7
Views
3K
  • Introductory Physics Homework Help
Replies
3
Views
2K
Back
Top