Rate of heat transfer / specific heat

AI Thread Summary
The discussion focuses on calculating the time required to heat or cool an 8-inch concrete slab with an initial temperature of 60°F and ambient air temperature of 20°F. The heat transfer rate is described using the equation H = -k A (dT / dX), while the specific heat of concrete is given as dQ = m c dT. A calculation suggests it would take approximately 637 seconds to cool the slab by 22.2°C, but this seems too quick given concrete's insulating properties. A participant recommends using the formula t ≈ L²/D, estimating that it would actually take around 10,000 seconds, or several hours, to heat the slab to near 60°F. The conversation emphasizes the importance of accurate thermal diffusivity calculations in determining heat transfer times.
charlotte7070
Messages
2
Reaction score
0
I am digging back thorugh thermodynamics textbooks, and am seeing insulation values etc. but none on how to solve for time required to heat a material.

Here is the specific problem. I am trying to fgure out how long its takes to cool (or alternately heat) a concrete slab.

The slab is 8 in. with initial temp 60 degrees F. Temperature on top and bottom of slab is ambient air temp, 20 degrees.

k, concrete = 1.7 W / m - deg K
c, concrete = 750 Joules

the area of slab can be assumed to be very large (an acre? infinity?)
and the air can be assumed to not change as a result of the heat loss of the concrete.

So I have rate of heat transfer: dependent on the surface area,
H = -k A (dT / dX)

and specific heat of concrete, dependent on mass:
dQ = m c dT = Joules

t (seconds) to cool one inch thickness concrete by 22.2 deg C or K
= dQ / H = 637 seconds (this seems a little fast to me since concrete is fairly insulating material).

Does this look correct? (Assuming I have the heat capacity and conductivity of concrete correct). This would be derived into an integral to get the temp at a certain time and depth, but as a consultant would be laughed out of the room, and will simplify to some finite steps in time and thickness.
No need to get to technical! I won't get it! Thank you for your input.
 
Science news on Phys.org
Hi charlotte7070, welcome to PF. A good rule of thumb for characteristic heat diffusion times is t\approx L^2/D, where L is a characteristic length (I'd take 4 in, or 0.1 m, for this problem) and D=k/c\rho is the thermal diffusivity, which looks like it's around 10-6 m2 s-1 for concrete. So I'd estimate it would take at least 104 s, or several hours, to heat most of the slab to close to 60°F.
 
thank YOU!
 
I was watching a Khan Academy video on entropy called: Reconciling thermodynamic and state definitions of entropy. So in the video it says: Let's say I have a container. And in that container, I have gas particles and they're bouncing around like gas particles tend to do, creating some pressure on the container of a certain volume. And let's say I have n particles. Now, each of these particles could be in x different states. Now, if each of them can be in x different states, how many total...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
Back
Top