- 4,796
- 32
Consider p_n(z) and q_d(z) two polynomials over \mathbb{C}[/tex], which can be factorized like so:<br />
<br />
p_n(z) = a_n (z-z_1)^{n_1}...(z-z_{k})^{n_k}<br />
q_d(z) = b_d(z-\zeta_1)^{d_1}...(z-\zeta_{m})^{d_m}<br />
<br />
(\sum^k n_i =n \ \ \ \sum^m d_i =d)<br />
<br />
and the rationnal function R: \mathbb{C}\cup \{\infty\} \rightarrow \mathbb{C}\cup \{\infty\} defined by<br />
<br />
R(z) = \frac{p_n(z)}{q_d(z)} if z \neq \zeta_i, \infty<br />
<br />
R(\zeta_i) = \infty<br />
<br />
R(\infty) = \left\{ \begin{array}{rcl}<br />
\infty &amp; \mbox{if}<br />
&amp; n&gt;d \\ \frac{a_n}{b_n} &amp; \mbox{if} &amp; n=d \\<br />
0 &amp; \mbox{if} &amp; n&lt;d<br />
\end{array}\right<br />
<br />
I fail to see why R(z) has exactly max\{n,d\} roots and poles. It seems to me the number of roots is equal to k or k+1 in the case of n<d and the number of poles is m or m+1 in the case of n>d.
Last edited: