Rationalizing: (5s^2-20s+36)/((s-2)(s^2-4s+20))

  • Thread starter Thread starter gtfitzpatrick
  • Start date Start date
gtfitzpatrick
Messages
372
Reaction score
0
(5s^{2}-20s+36)/((s-2)(s^{2}-4s+20)

expanding out i just inputed

EXPAND((5·s^2 - 20·s + 36)/((s - 2)·(s^2 - 4·s + 20)), Rational, s)

but trying to L^{-1} does anyone have any ideas?

i tried

LAPLACE((5·s^2 - 20·s + 36)/((s - 2)·(s^2 - 4·s + 20), t, S)·s  Real (0, ∞)

should i just do it by its parts or can i do it whole?
 
Physics news on Phys.org
First decompose that expression into partial fractions. Then apply the inverse Laplace transform to the individual fraction expressions. In general that's how you find the inverse Laplace transform for complicated expressions.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top