Now we are ready to express our two events. Normally, I would use the nomenclature of [t,x,y,z] but since we have agreed to assign zeroes to y an z, I will use the shorthand nomenclature of [t,x]. So here are our two events for the lightning bolts (E1 is in front, E2 is behind:
E1=[0,+500]
E2=[0,-500]
The fact that they both have the same t coordinate means that they are simultaneous.
Now let's define the train Frame of Reference. In order to make things simple, we want to use the standard form so that we can easily use the Lorentz Transform and that means we want to use the same axis directions and units for distance and time and we want their origins to coincide. We will place the origin of the train at its midpoint.
Now we are ready to use the Lorentz Transform. We will use units such that the speed of light equals 1 which means that we are using nanoseconds for time and light nanoseconds (which equal one foot) for distances.
First we have to calculate gamma, γ, from this formula:
γ = 1/√(1-β2)
For β=0.6,
γ=1/√(1-0.62)
γ=1/√(1-0.36)
γ=1/√(0.64)
γ=1/0.8
γ=1.25
Now the Lorentz Transform has two formulas, one for calculating the new t' coordinate and one for calculating the new x' coordinate from the old t and x coordinates. Here they are:
t'=γ(t-βx)
x'=γ(x-vt)
Since we are only interested in the time coordinate, we will do that calculation for each of our two events here:
t1'=1.25(0-0.6*500)
t1'=1.25(300)
t1'=375
t2'=1.25(0-0.6*-500)
t2'=1.25(-300)
t2'=-375
We can see right away that these two time coordinates are different so the events they go with are not simultaneous. In fact, as a sanity check, we can calculate the difference between them as 750 nanoseconds which is the same value we calculated in post #54 where we used BruceW's shortcut formulat and got 0.75 microseconds.