Recurrence Relation for Iterative Solution of Ax=b

Kidnapster
Messages
2
Reaction score
0
_nx represents the nth iteration.

Homework Statement



Show that {_{n+2}}x = _nx + M^{-1}(b-A{_nx})

Homework Equations



{_{n+1}}x = _nx + M_1^{-1}(b-A{_nx})
{_{n+2}}x = {_{n+1}}x + M_2^{-1}(b-A{_{n+1}x})
M = M_1(M_1+M_2-A)^{-1}M_2

The Attempt at a Solution



I tried was adding the two equations, which gives _{n+2}x = M_2^{-1}(b-A{_{n+1}x}) + _nx + M_1^{-1}(b-A{_nx}). But M_2^{-1}(b-A{_{n+1}}x) devolves into a huge mess once I expand it. Subtraction is less helpful, as you are left without any _nx. Directly substituting for _{n+1}x in the second equation is even less helpful, as you are left with a huge mess of terms that can't really be factored. What am I missing?
 
Physics news on Phys.org
Never mind, figured it out. Here's my solution:

<br /> \begin{align*}<br /> {_{n+1}x} &amp;= {_nx} + M_1^{-1}(b-A_nx)\\<br /> {_{n+2}x} &amp;= {_{n+1}x} + M_1^{-1}(b-A_{n+1}x) \\<br /> {_{n+2}x} &amp;= {_nx} + M_1^{-1}(b-A_nx) + M_2^{-1}(b-A[{_nx} + M_1^{-1}(b-A_nx)])\\<br /> {_{n+2}x} &amp;= {_nx} + M_1^{-1}b - M_1^{-1}A_nx + M_2^{-1}b-M_2^{-1}A_nx - M_2^{-1}AM_1^{-1}b + M_2^{-1}AM_1^{-1}A_nx \\<br /> {_{n+2}x} &amp;= {_nx} + M_1^{-1}(b-A_nx) + M_2^{-1}(b-A_nx) - M_2^{-1}AM_1^{-1}(b-A_nx) \\<br /> {_{n+2}x} &amp;= {_nx} + M_1^{-1}(M_1+M_2-A)M_2^{-1}(b-A_nx)<br /> \end{align*}<br /> <br />
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top