Reduce to x+iy: Solving for z=cos\theta+isin\theta

  • Thread starter Thread starter kathrynag
  • Start date Start date
kathrynag
Messages
595
Reaction score
0

Homework Statement



Reduce to x+iy
\frac{1+z}{1-z} where z=cos\theta+isin\theta.

Homework Equations





The Attempt at a Solution


\frac{1+z}{1-z}
Multiply by conjugate
\frac{1+2z+z^{2}}{1-z^{2}}
When I plug in the z value nothing seems to cancel out.
 
Physics news on Phys.org
You seem to have multiplied both the numerator and denominator by (1+z)...but that isn't really the complex conjugate of (1-z) is it?:wink:...Don't you actually want to multiply by (1-\bar{z}) instead?
 
So i should multiply by 1+(costheta+isintheta)?
 
No, 1-z=(1-\cos\theta)-i\sin\theta, so \overline{1-z}=___?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top