Reference Frames in Simultaneity

am2010
Messages
15
Reaction score
0
Lets say that a person in a moving train throws a ball in the direction of motion from one end and hits the other end of the train at 10 mph (relative to the person on the train). According to special relativity, from the perspective of a platform observer though they would see the ball having to take marginally longer to reach the other end of the train thus according to the platform's frame, time is different.

However for objects that are traveling at 10mph wouldn't it be the case that (from the platform observer's frame) since the train is moving as well the velocities of the ball is NOT 10mph but instead 10 mph + the train's velocity (Law of Relative Motion). Wouldn't this addition in speed then compensate for the slowing down of time so that the platform observer would see the ball reaching the other end of the train at the same time as the person in the train.
 
Physics news on Phys.org
am2010 said:
However for objects that are traveling at 10mph wouldn't it be the case that (from the platform observer's frame) since the train is moving as well the velocities of the ball is NOT 10mph but instead 10 mph + the train's velocity (Law of Relative Motion). Wouldn't this addition in speed then compensate for the slowing down of time so that the platform observer would see the ball reaching the other end of the train at the same time as the person in the train.
You are correct that with respect to the platform, the speed of the ball is not 10 mph but faster due to the speed of the train itself. But it's not simply 10 mph + the train's velocity. One must add velocities using the relativistic law of velocity addition, which looks like this:

V_{a/c} = \frac{V_{a/b} + V_{b/c}}{1 + (V_{a/b} V_{b/c})/c^2}

Instead of this (which is only good for low speeds):

V_{a/c} = V_{a/b} + V_{b/c}

There are other factors to consider, such as length contraction: With respect to the platform, the train is shorter.
 
Doc Al said:
You are correct that with respect to the platform, the speed of the ball is not 10 mph but faster due to the speed of the train itself. But it's not simply 10 mph + the train's velocity. One must add velocities using the relativistic law of velocity addition, which looks like this:

V_{a/c} = \frac{V_{a/b} + V_{b/c}}{1 + (V_{a/b} V_{b/c})/c^2}

Instead of this (which is only good for low speeds):

V_{a/c} = V_{a/b} + V_{b/c}

There are other factors to consider, such as length contraction: With respect to the platform, the train is shorter.

Since we're dealing with low speeds (ball at 10 mph and the train at an even lower speed) then I would use the bottom equation. Since we add the velocities using this relativistic law, isn't it correct that the platform observer sees the ball hitting the other end of the train first BEFORE the person in the train. Thus time is speeding up for the platform observer?
 
am2010 said:
Since we're dealing with low speeds (ball at 10 mph and the train at an even lower speed) then I would use the bottom equation. Since we add the velocities using this relativistic law, isn't it correct that the platform observer sees the ball hitting the other end of the train first BEFORE the person in the train. Thus time is speeding up for the platform observer?
I don't understand your point. If you are only talking about low, non-relativistic speeds, then there's no time dilation or length contraction to worry about. Time is not slowing down (or speeding up) for anyone. All observers will say that the ball takes the same amount of time to travel from one end of the train to the other.

What do you mean when you say that the "platform observer sees the ball hitting the other end of the train first BEFORE the person in the train"?

There's no problem in having everyone's clock synchronized. If the person on the train says the ball hit the end of the train at 1:00 pm, the platform observer will agree.
 
Last edited:
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...

Similar threads

Back
Top