MHB Relation between null and column space

Click For Summary
The discussion focuses on the relationship between the null space and the column space of matrices A and B, specifically whether the equality of their null spaces implies the equality of their column spaces in reduced row echelon form (RREF), or vice versa. Participants clarify that "col" refers to the column space of the RREF of a matrix, while "null" denotes the null space or kernel of the matrix. Examples of simple matrices are suggested to explore the implications of the relationships between the null spaces and column spaces. The conversation emphasizes the need for clarity in definitions to understand the mathematical connections. Overall, the relationship between the null and column spaces remains a central question in the discussion.
Dethrone
Messages
716
Reaction score
0
Is there a relationship between 1 and 2. If so, is it 1 implies 2, 2 implies 1, or if and only if.
1) $\operatorname{null}A=\operatorname{null}B$
2) $\operatorname{col}\operatorname{rref}A=\operatorname{col}\operatorname{rref }B$
 
Physics news on Phys.org
Rido12 said:
Is there a relationship between 1 and 2. If so, is it 1 implies 2, 2 implies 1, or if and only if.
1) $\operatorname{null}A=\operatorname{null}B$
2) $\operatorname{col}\operatorname{rref}A=\operatorname{col}\operatorname{rref }B$

Hey Rido! ;)

Nice operatornames! (Mmm)

Actually, I'm not quite clear on what $\operatorname{col}$ is supposed to mean.
It it the column space? Or the rank of the column space?
Can you clarify?

And what about $\operatorname{null}$? Is it whether the matrix is a null matrix, or is it the kernel $\operatorname{ker}$? (Wondering)
 
I like Serena said:
Hey Rido! ;)

Nice operatornames! (Mmm)

Actually, I'm not quite clear on what $\operatorname{col}$ is supposed to mean.
It it the column space? Or the rank of the column space?
Can you clarify?

And what about $\operatorname{null}$? Is it whether the matrix is a null matrix, or is it the kernel $\operatorname{ker}$? (Wondering)
$\DeclareMathOperator{\adj}{adj}$
$\DeclareMathOperator{\null}{null}$
$\DeclareMathOperator{\col}{col}$

Hi ILS! :D

$\col A$ represents the column space of $A$, so in this case, it is the column space of the row reduced form of $A$. The matrix is the null matrix.
 
Let's pick a couple of simple matrices. (Thinking)

Say $A=(^{2\ 0}_{0\ 0})$ and $B=(^{0\ 3}_{0\ 0})$.

What are $\operatorname{null} A$ and $\operatorname{null} B$?
And $\operatorname{rref} A, \operatorname{rref} B$?
And $\operatorname{col} \operatorname{rref} A, \operatorname{col} \operatorname{rref} B$?

Do they give you a clue? (Wondering)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
973
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K