Relation between null and column space

Click For Summary
SUMMARY

The discussion focuses on the relationship between the null space and the column space of matrices, specifically examining two statements: 1) $\operatorname{null}A=\operatorname{null}B$ and 2) $\operatorname{col}\operatorname{rref}A=\operatorname{col}\operatorname{rref}B$. It is established that $\operatorname{col} A$ refers to the column space of matrix A, particularly in its row-reduced echelon form (rref). The participants explore examples of matrices A and B to illustrate the concepts of null space and column space, seeking to clarify the implications of these relationships.

PREREQUISITES
  • Understanding of linear algebra concepts, specifically null space and column space.
  • Familiarity with row-reduced echelon form (rref) of matrices.
  • Knowledge of matrix operations and properties.
  • Basic proficiency in mathematical notation and operators, such as $\operatorname{null}$ and $\operatorname{col}$.
NEXT STEPS
  • Study the properties of null spaces in linear transformations.
  • Learn about the implications of the rank-nullity theorem in linear algebra.
  • Explore examples of row-reduced echelon forms and their corresponding column spaces.
  • Investigate the relationship between the kernel of a matrix and its null space.
USEFUL FOR

Students of linear algebra, educators teaching matrix theory, and mathematicians interested in the properties of matrix transformations and their implications in higher mathematics.

Dethrone
Messages
716
Reaction score
0
Is there a relationship between 1 and 2. If so, is it 1 implies 2, 2 implies 1, or if and only if.
1) $\operatorname{null}A=\operatorname{null}B$
2) $\operatorname{col}\operatorname{rref}A=\operatorname{col}\operatorname{rref }B$
 
Physics news on Phys.org
Rido12 said:
Is there a relationship between 1 and 2. If so, is it 1 implies 2, 2 implies 1, or if and only if.
1) $\operatorname{null}A=\operatorname{null}B$
2) $\operatorname{col}\operatorname{rref}A=\operatorname{col}\operatorname{rref }B$

Hey Rido! ;)

Nice operatornames! (Mmm)

Actually, I'm not quite clear on what $\operatorname{col}$ is supposed to mean.
It it the column space? Or the rank of the column space?
Can you clarify?

And what about $\operatorname{null}$? Is it whether the matrix is a null matrix, or is it the kernel $\operatorname{ker}$? (Wondering)
 
I like Serena said:
Hey Rido! ;)

Nice operatornames! (Mmm)

Actually, I'm not quite clear on what $\operatorname{col}$ is supposed to mean.
It it the column space? Or the rank of the column space?
Can you clarify?

And what about $\operatorname{null}$? Is it whether the matrix is a null matrix, or is it the kernel $\operatorname{ker}$? (Wondering)
$\DeclareMathOperator{\adj}{adj}$
$\DeclareMathOperator{\null}{null}$
$\DeclareMathOperator{\col}{col}$

Hi ILS! :D

$\col A$ represents the column space of $A$, so in this case, it is the column space of the row reduced form of $A$. The matrix is the null matrix.
 
Let's pick a couple of simple matrices. (Thinking)

Say $A=(^{2\ 0}_{0\ 0})$ and $B=(^{0\ 3}_{0\ 0})$.

What are $\operatorname{null} A$ and $\operatorname{null} B$?
And $\operatorname{rref} A, \operatorname{rref} B$?
And $\operatorname{col} \operatorname{rref} A, \operatorname{col} \operatorname{rref} B$?

Do they give you a clue? (Wondering)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
12
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K