Relationship of Modulus to thermal expansion

AI Thread Summary
The discussion focuses on the relationship between thermal expansion and modulus of elasticity in UV-cured polymers constrained within rigid cylinders. It highlights that if a polymer is constrained, thermal expansion does not occur, and outlines a method to calculate thermal expansion, stress, and force. The thermal coefficient of expansion and Young's modulus are emphasized as key properties, with formulas provided for understanding their relationship. The importance of using correct terminology to avoid confusion is also noted. Overall, the calculations for different polymers can enhance understanding of these relationships.
joeaccetta
Messages
4
Reaction score
0
I'm trying to figure out how to relate expected thermal expansion of a uv cured polymer within a rigid cylinder to a modulus specification. The issue is the expected change in refractive index due to thermal expansion. The expansion coefficients are not available. Anybody have an idea. Do greater specified moduli lead to increased or decreased expansion?
 
Engineering news on Phys.org
The thermal coefficient of expansion is one property. It describes how much an unconstrained object changes size with temperature change.

The modulus of elasticity, AKA elastic modulus, AKA Young's modulus, describes how much an object changes size with stress change.

You need to use the correct terms to avoid confusion.

If a polymer is constrained inside a rigid cylinder, then there is no thermal expansion. That is a simple problem to solve. Step 1: Calculate thermal expansion from temperature change. Step 2: Calculate stress to force the part back to its original size. Step 3 (optional): Calculate the force to get that stress.

One good way to get a better understanding of the relationships is to do the calculations for one polymer, then repeat for a different polymer with different properties.
 
You didn’t say which modulus you mean but I’ll also assume that it’s just Young’s modulus and share simple formulas involving thermal expansion coefficient and aforementioned modulus of elasticity: $$\Delta L= \alpha L_{0} \Delta T$$ $$\varepsilon=\frac{\Delta L}{L_{0}}$$ $$E=\frac{\sigma}{\varepsilon}$$ $$\sigma=E \varepsilon=E \alpha \Delta T$$
 
jrmichler said:
The thermal coefficient of expansion is one property. It describes how much an unconstrained object changes size with temperature change.

The modulus of elasticity, AKA elastic modulus, AKA Young's modulus, describes how much an object changes size with stress change.

You need to use the correct terms to avoid confusion.

If a polymer is constrained inside a rigid cylinder, then there is no thermal expansion. That is a simple problem to solve. Step 1: Calculate thermal expansion from temperature change. Step 2: Calculate stress to force the part back to its original size. Step 3 (optional): Calculate the force to get that stress.

One good way to get a better understanding of the relationships is to do the calculations for one polymer, then repeat for a different polymer with different properties.
Thanks. Unfortunately, the particular modulus was not specified.
 
jrmichler said:
The thermal coefficient of expansion is one property. It describes how much an unconstrained object changes size with temperature change.

The modulus of elasticity, AKA elastic modulus, AKA Young's modulus, describes how much an object changes size with stress change.

You need to use the correct terms to avoid confusion.

If a polymer is constrained inside a rigid cylinder, then there is no thermal expansion. That is a simple problem to solve. Step 1: Calculate thermal expansion from temperature change. Step 2: Calculate stress to force the part back to its original size. Step 3 (optional): Calculate the force to get that stress.

One good way to get a better understanding of the relationships is to do the calculations for one polymer, then repeat for a different polymer with different properties.
Thanks. Unfortunately the particular modulus is not specified but probably Youngs.
 
FEAnalyst said:
You didn’t say which modulus you mean but I’ll also assume that it’s just Young’s modulus and share simple formulas involving thermal expansion coefficient and aforementioned modulus of elasticity: $$\Delta L= \alpha L_{0} \Delta T$$ $$\varepsilon=\frac{\Delta L}{L_{0}}$$ $$E=\frac{\sigma}{\varepsilon}$$ $$\sigma=E \varepsilon=E \alpha \Delta T$$
Thank you
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top