Relationship of Modulus to thermal expansion

AI Thread Summary
The discussion focuses on the relationship between thermal expansion and modulus of elasticity in UV-cured polymers constrained within rigid cylinders. It highlights that if a polymer is constrained, thermal expansion does not occur, and outlines a method to calculate thermal expansion, stress, and force. The thermal coefficient of expansion and Young's modulus are emphasized as key properties, with formulas provided for understanding their relationship. The importance of using correct terminology to avoid confusion is also noted. Overall, the calculations for different polymers can enhance understanding of these relationships.
joeaccetta
Messages
4
Reaction score
0
I'm trying to figure out how to relate expected thermal expansion of a uv cured polymer within a rigid cylinder to a modulus specification. The issue is the expected change in refractive index due to thermal expansion. The expansion coefficients are not available. Anybody have an idea. Do greater specified moduli lead to increased or decreased expansion?
 
Engineering news on Phys.org
The thermal coefficient of expansion is one property. It describes how much an unconstrained object changes size with temperature change.

The modulus of elasticity, AKA elastic modulus, AKA Young's modulus, describes how much an object changes size with stress change.

You need to use the correct terms to avoid confusion.

If a polymer is constrained inside a rigid cylinder, then there is no thermal expansion. That is a simple problem to solve. Step 1: Calculate thermal expansion from temperature change. Step 2: Calculate stress to force the part back to its original size. Step 3 (optional): Calculate the force to get that stress.

One good way to get a better understanding of the relationships is to do the calculations for one polymer, then repeat for a different polymer with different properties.
 
You didn’t say which modulus you mean but I’ll also assume that it’s just Young’s modulus and share simple formulas involving thermal expansion coefficient and aforementioned modulus of elasticity: $$\Delta L= \alpha L_{0} \Delta T$$ $$\varepsilon=\frac{\Delta L}{L_{0}}$$ $$E=\frac{\sigma}{\varepsilon}$$ $$\sigma=E \varepsilon=E \alpha \Delta T$$
 
jrmichler said:
The thermal coefficient of expansion is one property. It describes how much an unconstrained object changes size with temperature change.

The modulus of elasticity, AKA elastic modulus, AKA Young's modulus, describes how much an object changes size with stress change.

You need to use the correct terms to avoid confusion.

If a polymer is constrained inside a rigid cylinder, then there is no thermal expansion. That is a simple problem to solve. Step 1: Calculate thermal expansion from temperature change. Step 2: Calculate stress to force the part back to its original size. Step 3 (optional): Calculate the force to get that stress.

One good way to get a better understanding of the relationships is to do the calculations for one polymer, then repeat for a different polymer with different properties.
Thanks. Unfortunately, the particular modulus was not specified.
 
jrmichler said:
The thermal coefficient of expansion is one property. It describes how much an unconstrained object changes size with temperature change.

The modulus of elasticity, AKA elastic modulus, AKA Young's modulus, describes how much an object changes size with stress change.

You need to use the correct terms to avoid confusion.

If a polymer is constrained inside a rigid cylinder, then there is no thermal expansion. That is a simple problem to solve. Step 1: Calculate thermal expansion from temperature change. Step 2: Calculate stress to force the part back to its original size. Step 3 (optional): Calculate the force to get that stress.

One good way to get a better understanding of the relationships is to do the calculations for one polymer, then repeat for a different polymer with different properties.
Thanks. Unfortunately the particular modulus is not specified but probably Youngs.
 
FEAnalyst said:
You didn’t say which modulus you mean but I’ll also assume that it’s just Young’s modulus and share simple formulas involving thermal expansion coefficient and aforementioned modulus of elasticity: $$\Delta L= \alpha L_{0} \Delta T$$ $$\varepsilon=\frac{\Delta L}{L_{0}}$$ $$E=\frac{\sigma}{\varepsilon}$$ $$\sigma=E \varepsilon=E \alpha \Delta T$$
Thank you
 
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
How did you find PF?: Via Google search Hi, I have a vessel I 3D printed to investigate single bubble rise. The vessel has a 4 mm gap separated by acrylic panels. This is essentially my viewing chamber where I can record the bubble motion. The vessel is open to atmosphere. The bubble generation mechanism is composed of a syringe pump and glass capillary tube (Internal Diameter of 0.45 mm). I connect a 1/4” air line hose from the syringe to the capillary The bubble is formed at the tip...
Thread 'Calculate minimum RPM to self-balance a CMG on two legs'
Here is a photo of a rough drawing of my apparatus that I have built many times and works. I would like to have a formula to give me the RPM necessary for the gyroscope to balance itself on the two legs (screws). I asked Claude to give me a formula and it gave me the following: Let me calculate the required RPM foreffective stabilization. I'll use the principles of gyroscopicprecession and the moment of inertia. First, let's calculate the keyparameters: 1. Moment of inertia of...
Back
Top