Relationship of particle charge to speed?

AI Thread Summary
The discussion revolves around the relationship between particle charge and speed when released from a positively charged rod. A charged particle with a mass of 3.0 x 10^-8 kg and a charge of 2 microcoulombs is observed to reach a speed of 40 m/s at point X. The question arises about the speed of a second particle with the same mass but nine times the charge when released from the same point. Initially, it is suggested that the speed would be equal due to the mass being constant, but further analysis indicates that as charge increases, the change in potential energy also increases, leading to a decrease in kinetic energy. Ultimately, the conclusion is that the speed of the second particle will be less than that of the first as it passes point X.
temptasian
Messages
2
Reaction score
0

Homework Statement



The four points shown in the attached picture are near a positively charged rod (shaded circle). Points W and Y are equidistant from the rod, as are points X and Z. A charged particle with mass 3.0 x 10^-8 kg is released from rest at point W and later observed to pass point X.
Suppose the magnitude of the charge is 2 microcoloumbs and that the speed of the particle is 40 m/s as it passes point X. Suppose that a second particle with the same mass as the first but NINE times the CHARGE were released from rest at point W. Would the speed of the second particle as it passes point X be greater than, less than, or equal to the speed of the first particle (with charge of 2 microcoulombs) as it passes point X?


Homework Equations


From KE = 1/2 (mv^2), I know that charge is not involved here, and since mass is the same, I believe the speed of the second particle is equal to the speed of the first particle.
However, I'm not sure if I should be using this equation to make a relationship between speed and charge. Other possible equations to use may be: U(potential energy) = qV, and W = -qEd = ΔU
Am I on the right track?

The Attempt at a Solution

 

Attachments

  • Untitled.png
    Untitled.png
    3.8 KB · Views: 501
Physics news on Phys.org
yes, you need to use the 'other possible equations'. You've got ΔU=qΔV This is the change in potential energy, so what will be the change in kinetic energy? Also, is ΔV the same or different in the two situations?
 
ΔV is constant for both situations. So if I use ΔU = qΔV, when charge increases, ΔU has to increase also, which means kinetic energy has decreased. Since KE has decreased, and we know that KE = 1/2 mv^2, the speed of the second particle will be less than the speed of the second particle. I hope I'm correct here?
 
Yes, the ΔV is the same in both situations.
temptasian said:
So if I use ΔU = qΔV, when charge increases, ΔU has to increase also, which means kinetic energy has decreased. Since KE has decreased, and we know that KE = 1/2 mv^2, the speed of the second particle will be less than the speed of the second particle.
But this isn't right. Think about the sign of ΔU. The particle is being pushed away from the rod, so how does the potential change when the particle moves away from the rod?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top