PeterDonis
Mentor
- 48,834
- 24,959
Q-reeus said:Peter, you've got my head spinning here again. Thought had this much bedded down: in GR all gravitational fields - static or GW's, contribute nothing to what we would term M, the gravitating mass (inclusive of momentum and pressure) that is the origin of all curvature - Ricci and Weyl etc.
I think you are misunderstanding the meaning of the term "mass"; or, rather, you are conflating two different possible meanings. The "M" that appears in the metric, for example the Schwarzschild metric, is "not" the same as the "mass" (actually "energy density", or "0-0 component") that appears in the stress-energy tensor as a "source" of curvature. It's critical to understand the distinction between these two concepts. See further comments below.
Q-reeus said:Now, it is common to label a black hole with a certain *gravitating* mass M, right?
It's not just "labeling". The "M" that appears in the metric has a definite physical meaning: it's the mass you would measure if you put a test object in orbit around the black hole, measured its orbital parameters, and applied Kepler's Third Law. The same applies for any gravitating object--the Sun, for example. If we write down an expression for the metric in the vacuum region exterior to the Sun, it will have an "M" in it which is the Sun's mass measured the same way.
But measuring "M" this way tells us nothing about how it relates to the presence of a non-zero SET in the spacetime (except that there must be one *somewhere*). If we only went by the measured mass M, we would not know whether the Sun was a star or a black hole; either would give the same M. See below.
Q-reeus said:Zero SET, and zero contribution from the field. Oh my. So this gets back to 'past light cone' presumably - there *was* a SET but now... Alright, let's just say a BH's mass M derives from a 'fossil' SET.
Remember how we measure M: we put a test object in orbit. That orbit has to be at some radial coordinate r. To understand "where the M comes from", follow the prescription I gave earlier: pick an event somewhere on the worldline of the test object orbiting at that r; look in the past light cone of that event; and find a region with a nonzero SET. Suppose we have M = M(Sun), and we have used an orbit at r = r(Earth) to measure it. Then if the Sun is actually a star, we will find a region of nonzero SET pretty quickly--only eight light-minutes into the past light cone. But if the Sun is a black hole, we may have to look much further to find the nonzero SET region. It just so happens that, because of the particular symmetry of the situation (remember we are assuming perfect spherical symmetry, since that's a condition of the Schwarzschild solution), the "field" at a particular radial coordinate r in the exterior vacuum region is the same for all times t to the future of the nonzero SET region; so it doesn't matter whether that region is eight light-minutes or a billion light-years into the past light-cone, you get the same field--meaning the same metric, and therefore the same measured mass M--either way.
Q-reeus said:Is it not still the case, in pre-merger we say start with M1 + M2 = Mt, and after merger we have M3 ~ 60% Mt (the deficit in purely *energy* terms carried off by GW's). All those M's representing gravitating mass. A net reduction, regardless of what we call the source of each M. What am I missing here?
Here we have violated the condition of spherical symmetry during the merger, so the relationship between the measured M and the nonzero SET regions in the past light cone can be more complicated. Before the merger, if we assume each BH was stationary, we can relate M1 and M2 to two nonzero SET regions in the past light cones as above. But after the merger, there is a region of spacetime where there are violent curvature fluctuations because of the violation of spherical symmetry; and those curvature fluctuations carry off energy in the form of gravitational waves. That changes the relationship between the final measured mass M3 and the nonzero SET regions in the past light-cone. It doesn't change anything about the SET regions themselves; no actual stress-energy escapes during the BH merger (it's all trapped behind the horizons of the BH's). But "nonzero SET" and "gravitating mass" in the sense of the value M appearing in the metric are, as I said above, not the same; and the relationship between them depends on the configuration of the spacetime in between the nonzero SET region and the event at which the metric, and thus M, is being measured.
Q-reeus said:The consequence is that a dispersed system, whether neutron stars or BH's, carries there a maximal total energy/gravitating mass Mt. After collision/merger/ringdown, necesarily a portion of that original Mt has been lost to GW's - the remainder has to be less than before - how can there not be a reduction and maintain conservation of energy?
There is a reduction in M, yes; as you say, there has to be by conservation of energy. There is no "reduction" in the "stress-energy content"--see above. M and "stress-energy content" are not identical.
Q-reeus said:The problem is you adopted a different meaning to the terms I had originally used in #45. Your M is not the M I used there. If you go back and check carefully I think there will be no conflicting opinion on that issue.
See my comments on the meaning of M, and how it is measured, above.