Relativistic version of Newton's second law with parallel force

MasterNewbie
Messages
8
Reaction score
0

Homework Statement


"Given F=dp/dt. If the force is parallel to velocity show that F=γ3ma."


Homework Equations


F=dp/dt and p=γmv


The Attempt at a Solution


Since the force is the first derivative of the momentum with respect to time, and γ and v both vary with time since there is a net force causing both quantities to change, take the derivative of p using multiplication rule: dp/dt = m[γ'v+γa] γ'=γ3*v/c2 so this would change dp/dt to dp/dt = m[γ3(v/c)2+γa] After this I can't think of anywhere to go that could simplify this to the desired equation F=γ3ma.
 
Physics news on Phys.org
are you sure about \gamma and its derivative? there must be something wrong about it
 
Yeah, I did the derivative wrong, I forgot to do chain rule for the v2 so the derivative of γ would be γ3*va/c2

So then dp/dt = γma[γ2(v/c)2+1]. Assuming the math I did was right the only way I could get what I'm looking for is if (v/c)2 is equal to 1-1/γ2 so when you distribute you'd get γ2-1+1, then it would give dp/dt = F = γ3ma what I'm looking for.

I'll have to mess around with this.

[edit]
Coincidentally (v/c)2 does equal what it needs to equal to simplify to what the equation needs to be.

Thank you a lot Pull :)
[/edit]
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top