Understanding the Compatibility of Relativity and Quantum Theories

  • Thread starter Thread starter mathshead
  • Start date Start date
  • Tags Tags
    Relativity
mathshead
can something tell me what the theory of relativity and quantum are, and how they are not compatiable with each other?
 
Physics news on Phys.org
General Relativity is a theory about gravitation. It says that the universe has an intrinsic curvature which is generated by the location and flow of mass and energy, and our perception of gravity is really just the natural tendency of matter and energy to flow along the curves of space-time.


Quantum Chromodynamics is a theory about electromagnetism and the weak & strong forces. It says that the concept of "simultaneous knowledge of position and momentum" is gibberish.



When you put the two together, things blow up.

Basically, if I understand it correctly, what happens is that QCD tells you that you don't know both the position and the momentum of a particle. This means that GR doesn't know exactly how space-time should be curved. This uncertainty magnifies the uncertainty in our knowledge of the particle's position and momentum... thus we're even less certain how it bends space time...

This self-perpetuating uncertainty keeps feeding and growing, until uncertainties become infinite!

Now, Quantum Mechanics works with such loops; less naive techniques are used to "renormalize" equations to get rid of the infinities... however the infinities involved with gravitation have resisted all attempts at being normalized away.


Hurkyl
 
Originally posted by Hurkyl
General Relativity is a theory about gravitation. It says that the universe has an intrinsic curvature which is generated by the location and flow of mass and energy, and our perception of gravity is really just the natural tendency of matter and energy to flow along the curves of space-time.
Yahoo ! 5.5 lines ! You're the man Hurkyl !
 
Originally posted by Hurkyl
General Relativity is a theory about gravitation. It says that the universe has an intrinsic curvature which is generated by the location and flow of mass and energy, and our perception of gravity is really just the natural tendency of matter and energy to flow along the curves of space-time.


Quantum Chromodynamics is a theory about electromagnetism and the weak & strong forces. It says that the concept of "simultaneous knowledge of position and momentum" is gibberish.



When you put the two together, things blow up.

this isn t quite accurate. first of all, QCD is a theory of the strong nuclear force only. the theory that encompasses the strong and electroweak forces is known as the standard model.

second, the standard model is a field theory, not a quantum single particle theory. as such, it says nothing about the observability of the position and momentum of a particle. the observables in a field theory are the field and is conjugate field momentum. so for example, the electric field amplitude of a photon and the magnetic field amplitude are not simultaneously observable. or the matter and antimatter components of a complex scalar field.

it doesn t even make a lot of sense to ask about the position of the photon, since it is a field, extended in space.

it might be possible to speak about position and momentum operators as observables in field theory, but i have never seen this done. then again, i m no expert in quantum field theory.






Basically, if I understand it correctly, what happens is that QCD tells you that you don't know both the position and the momentum of a particle. This means that GR doesn't know exactly how space-time should be curved. This uncertainty magnifies the uncertainty in our knowledge of the particle's position and momentum... thus we're even less certain how it bends space time...

This self-perpetuating uncertainty keeps feeding and growing, until uncertainties become infinite!

Now, Quantum Mechanics works with such loops; less naive techniques are used to "renormalize" equations to get rid of the infinities... however the infinities involved with gravitation have resisted all attempts at being normalized away.


Hurkyl

i haven t heard it described exactly that way, but i like the way it sounds.

let me offer the explanation as i have heard it.

firstly, it is not quantum field theory in general which blows up when you try to add gravity, it is quantum perturbation theory. it is currently unknown whether one can avoid the nonrenormalizability by avoiding perturbation theory (since perturbation is the only way we know how to use field theory).

ok, so perturbation theory involves expanding in a series that is polynomial in the coupling constant. higher order corrections contribute less to the interaction in say, QED, because of the small size of the coupling constant, the fine structure constant.

well, in gravitation, the field (the metric) couples to energy (remember: Gμν=8πGTμν energy couples to metric)

so in quantum theory, when you do your perturbation, you must have a series that is polynomial in energy, and blows up for the UV limit.
 
this isn t quite accurate. first of all, QCD is a theory of the strong nuclear force only. the theory that encompasses the strong and electroweak forces is known as the standard model.

Aha, thank you! I have been unsure for quite some time on this aspect of the nomenclature!


Hurkyl
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top