Petar Mali
- 283
- 0
Homework Statement
How to represent function
\frac{1}{e^x-x-1}
in form of Laurent series around point 0
Homework Equations
Laurent series
f(z)=\sum^{\infty}_{n=-\infty}a_n(z-z_0)^n
Here is z_0=0
The Attempt at a Solution
Computer gives
\frac{2}{x^2}-\frac{2}{3 x}+\frac{1}{18}+\frac{x}{270}-\frac{x^2}{3240}-\frac{x^3}{13608}-\frac{x^4}{2041200}+\frac{x^5}{874800}+\frac{13 x^6}{146966400}-\frac{307 x^7}{24249456000}-\frac{479 x^8}{203695430400}+O[x]^9
in form of 12 first members in series.
e^{x}=1+x+\frac{x^2}{2!}+...
so I can say
e^x-x-1=\sum^{\infty}_{n=2}\frac{x^n}{n!}
\frac{1}{e^x-x-1}=\frac{1}{\sum^{\infty}_{n=2}\frac{x^n}{n!}}
But I don't know what to do with that.