Rewriting the propagator for the free particle as integral over E

quasar_4
Messages
273
Reaction score
0

Homework Statement



(This is all with respect to a free particle)
Show that the propagator U(t) = \int_{-\infty}^{\infty} |p><p| exp\left(\frac{-i E(p) t}{\hbar}\right) dp can be rewritten as an integral over E and sum over the \pm index as:

U(t) = \sum_{\alpha = \pm} \int_{0}^{\infty} \left(\frac{m}{\sqrt{2mE}}\right) |E, \alpha><E, \alpha| exp\left(\frac{-i E t}{\hbar}\right) dE.

Homework Equations



The Hamiltonian for a free particle is just H = P^2/2m (all kinetic energy) and the allowed values of momentum are plus or minus 2mE. So, for a given energy eigenvalue, there is a degenerate 2 dimensional subspace.

The Attempt at a Solution



Well... I can see that when we change to sum over E instead of P (or rather, integrate) that we have to change the limit of integration from 0 to infinity because the energy cannot be negative for a free particle. Also, it makes fine sense to me to sum over alpha because we're dealing with a degenerate subspace. What I can't figure out is the constant in front! Can someone help point me in the right direction?
 
Physics news on Phys.org
could the constant come from the intgeration variable change?

ie what is dE in terms of dp?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top