\rho \to \pi \pi decay rate

maelle
Messages
2
Reaction score
0
Hello everyone,

I'm using the chiral perturbation theory for mesons to calculate Vector into two Pseudoscalars decay rates - hopefully to be able to calculate Tensor into two pseudoscalars decay rates later on.

I've got the lagrangien for the \rho \to \pi \pi decay rate :

L= f_{\rho \pi \pi} \epsilon_{ijk} \rho_i^\mu \pi_j D_\mu \pi_k

and I've got to end up with

\Gamma (\rho \to \pi \pi) = f_{\rho \pi \pi}^2 / (48 \pi) m_\rho [1- 4 m_\pi^2/m_\rho^2]^3/2.

I'm at loss at how I'm supposed to find that the matrix element (squared) is

M^2 = 4/3 f_{\rho \pi \pi} p_\pi^2

where p_\pi^2 = (m_\rho^2 - 4 m_\pi^2)/4 - but that last part I found out.

I've been checking textbooks to find a nice way to express a matrix element using a Lagrangian but all I can find is that same thing only for QED, and using the Feynman rules for QED. I'd love to compute my Feynman rules for my chiral perturbation theory!

Please help me ;)
 
Physics news on Phys.org
cleaned up
maelle said:
Hello everyone,

I'm using the chiral perturbation theory for mesons to calculate Vector into two Pseudoscalars decay rates - hopefully to be able to calculate Tensor into two pseudoscalars decay rates later on.

I've got the lagrangien for the \rho \to \pi \pi decay rate :

L= f_{\rho \pi \pi} \epsilon_{ijk} \rho_i^\mu \pi_j D_\mu \pi_k

and I've got to end up with

\Gamma (\rho \to \pi \pi) = f_{\rho \pi \pi}^2 / (48 \pi) m_\rho [1- 4 m_\pi^2/m_\rho^2]^3/2.

I'm at loss at how I'm supposed to find that the matrix element (squared) is

M^2 = 4/3 f_{\rho \pi \pi} p_\pi^2

where p_\pi^2 = (m_\rho^2 - 4 m_\pi^2)/4 - but that last part I found out.

I've been checking textbooks to find a nice way to express a matrix element using a Lagrangian but all I can find is that same thing only for QED, and using the Feynman rules for QED. I'd love to compute my Feynman rules for my chiral perturbation theory!

Please help me ;)
 
Way better, thanks! Didn't know there was a Latex interface here... Although for the decay rate it's

<br /> \Gamma (\rho \to \pi \pi) = \frac{f_{\rho \pi \pi}^2 }{ 48 \pi } m_\rho [1- 4 m_\pi^2/m_\rho^2]^{3/2}.<br />

sorry for the misunderstanding.

Any ideas?
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top