- 4,796
- 32
Hi, maybe someone can help. When I think about it, I'm pretty sure that the following is true: Let c be a curve parametrized by t\in [a,b], let \sigma = \{t_0,...,t_N\} be a partition of [a,b] and \delta_{\sigma}=\max_{0\leq k \leq N-1}(t_{k+1}-t_k). Also define \Delta t_k=t_{k+1}-t_k Then,
\lim_{\delta_{\sigma}\rightarrow 0}\sum_{k=0}^{N-1}\frac{|c(t_k+\Delta t_k)-c(t_k)|}{\Delta t_k}\Delta t_k=\int_a^b |\frac{dc}{dt}(t)|dt
Proving this would also amount to proving
\lim_{\delta_{\sigma}\rightarrow 0}\sum_{k=0}^{N-1}\frac{|c(t_k+\Delta t_k)-c(t_k)|}{\Delta t_k}\Delta t_k=\lim_{\delta_{\sigma}\rightarrow 0}\sum_{k=0}^{N-1} |\frac{dc}{dt}(t_k)|\Delta t_k
Is there a way to do this using a finite succession of arguments?
\lim_{\delta_{\sigma}\rightarrow 0}\sum_{k=0}^{N-1}\frac{|c(t_k+\Delta t_k)-c(t_k)|}{\Delta t_k}\Delta t_k=\int_a^b |\frac{dc}{dt}(t)|dt
Proving this would also amount to proving
\lim_{\delta_{\sigma}\rightarrow 0}\sum_{k=0}^{N-1}\frac{|c(t_k+\Delta t_k)-c(t_k)|}{\Delta t_k}\Delta t_k=\lim_{\delta_{\sigma}\rightarrow 0}\sum_{k=0}^{N-1} |\frac{dc}{dt}(t_k)|\Delta t_k
Is there a way to do this using a finite succession of arguments?