Ring of Integers Isomorphism Problem

e(ho0n3
Messages
1,349
Reaction score
0
Homework Statement
Let N = AB, where A and B are positive integers that are relatively prime. Prove that ZN is isomorphic to ZA x ZB.

The attempt at a solution
I'm considering the map f(n) = (n mod A, n mod B). I've been able to prove that it is homomorphic and injective. Is it safe to conclude, since ZN and ZA x ZB have the same cardinality and f is injective, that f is surjetive? In any case, given an (a, b) in ZA x ZB, I've been trying to find an n such that f(n) = (a, b) without success. Any tips?
 
Physics news on Phys.org
Recall the Chinese remainder theorem.
 
Good tip. Thanks.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top