MHB RLC Series Circuit: State Equations

Dustinsfl
Messages
2,217
Reaction score
5
Using the capacitor voltage \(v_c(t)\) and the inductor current \(i_L(t)\) as states, write the state equations for the RLC series circuit shown in the figure.

mc8hQL5.png


We can write that \(e(t) = iR + \frac{di}{dt} + \frac{1}{C}\int i(t)dt\). I am not sure with what it wants when it says to write it as states.
 
Mathematics news on Phys.org
Shouldn't it be $e(t) = iR + L \frac{di}{dt} + \frac{1}{C}\int i(t)dt?$ I think when they say "state", they mean that the DE should be in that unknown variable. So if $i_{L}$ is the state variable, write the DE with $i_{L}$ as the unknown function.
 
dwsmith said:
Using the capacitor voltage \(v_c(t)\) and the inductor current \(i_L(t)\) as states, write the state equations for the RLC series circuit shown in the figure.

mc8hQL5.png


We can write that \(e(t) = iR + \frac{di}{dt} + \frac{1}{C}\int i(t)dt\). I am not sure with what it wants when it says to write it as states.

In electric egeneering are called states of a network somewhat is related to the 'energy' contained in the reactive elements, i.e. the voltage across a capacitors and the current in inductors. In Your case the network has two states, i.e.the two unknown variables are $v_{c} (t)$ and $i_{L} (t)$. The equation governing the network are...

$\displaystyle v_{c} (t) + R\ i_{L}(t) + i_{L}^{\ '} (t) = e(t)$

$\displaystyle v_{c}^{\ '} (t) = C\ i_{L} (t)\ (1)$

Kind regards

$\chi$ $\sigma$
 
Last edited:
I have determined my state transition matrix as
\[
\Phi(s) =
\frac{1}{(s + 1)(s + 2)}
\begin{pmatrix}
s & -1\\
2 & s + 3
\end{pmatrix}\Rightarrow
\varphi(t) = e^{-t}
\begin{pmatrix}
2e^{-t} - 1 & e^{-t} - 1\\
2(1 - e^{-t}) & 2 - e^{-t}
\end{pmatrix}.
\]
Then
\[
\begin{pmatrix}
i_L(s)\\
v_c(s)
\end{pmatrix} = \Phi(s)\mathbf{B}\mathbf{U}(s)
\]
What is \(\mathbf{B}\) and \(\mathbf{U}(s)\).
Additionally, I have that
\[
\begin{pmatrix}
\frac{di_L(t)}{dt}\\
\frac{dv_c(t)}{dt}
\end{pmatrix} =
\begin{pmatrix}
\frac{-R}{L} & \frac{-1}{L}\\
\frac{1}{C} & 0
\end{pmatrix}
\begin{pmatrix}
i_L(t)\\
v_c(t)
\end{pmatrix}
+
\begin{pmatrix}
\frac{1}{L}\\
0
\end{pmatrix}e(t) \qquad (*)
\]
where \(R = 3\), \(L = 1\), and \(C = \frac{1}{2}\).

The solution has
\[
\Phi(s)\mathbf{B}\mathbf{U}(s) =
\begin{pmatrix}
\frac{s}{(s+1)(s+3)}\\
\frac{2}{(s+1)(s+3)}
\end{pmatrix}
\frac{2}{s}
\begin{pmatrix}
e^{-s} & -e^{-2s}
\end{pmatrix}
\]
Therefore, \(\mathbf{U}(s) = \frac{2}{s}
\begin{pmatrix}
e^{-s} & -e^{-2s}
\end{pmatrix}\) where does this come from?

If we take the Laplace Transform of \((*)\), we end up with the factor \(\frac{2}{s}\). That is, we have
\begin{gather}
I(s) = \frac{E(s) - V(s)}{s + 3}\\
V(s) = \frac{2}{s}I(s)
\end{gather}
but that still leaves the question where does \(U(s)\) come from?
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
32
Views
2K
Replies
6
Views
2K
Replies
22
Views
2K
Replies
15
Views
5K
Replies
2
Views
1K
Replies
2
Views
2K
Replies
10
Views
306
Back
Top