Rocket Ship Question: How Much Gas for 2000 MPH?

  • Thread starter Thread starter Submission1
  • Start date Start date
  • Tags Tags
    Rocket Ship
AI Thread Summary
In the discussion, participants analyze the energy requirements for a rocket to accelerate from 1000 mph to 2000 mph compared to accelerating from rest to 1000 mph. It is established that achieving 2000 mph requires more than double the fuel due to the kinetic energy relationship, which depends on the square of the speed. The conversation highlights the importance of considering the rocket's changing mass as fuel is consumed, affecting energy calculations. Additionally, the conservation of momentum is emphasized as a more effective framework for understanding rocket dynamics than conservation of energy. Overall, the consensus is that while it takes more fuel to reach higher speeds, the energy dynamics are complex and require careful consideration of both the rocket and its exhaust.
Submission1
Messages
2
Reaction score
0
We are having a debate here at work and we need an answer from some smart folks (that's you).

If you have a rocket ship in space that takes 1 gallon of gas to reach 1000 mph then, negating friction, would it take less, more or the same amount to go from 1000 mph to 2000 mph.

Thanks,
Sub.
 
Physics news on Phys.org
Kinetic energy, the energy needed to move something depends on the speed squared.
So to travel at 2000 mph 4x as much energy as 1000mph. Since you started at 1000mph you will need to add 3x as much extra energy to get to 2000mph than you did to get to 1000mph.


You also have to take into account that the mass of the rocket is changing as you use up the fuel so it takes less energy to accelarate the rocket since it weighs less - if you doing this for real.
 
Last edited:
Cool. Thanks.
 
mgb_phys said:
Kinetic energy, the energy needed to move something depends on the speed squared.
So to travel at 2000 mph 4x as much energy as 1000mph. Since you started at 1000mph you will need to add 3x as much extra energy to get to 2000mph than you did to get to 1000mph.
But there's nothing special about the starting frame of reference. So it shouldn't take any more fuel to add an extra 1000mph starting in the 1000mph frame as to get to the 1000mph frame starting from the zero frame.
 
Does that apply if it's accelerating ?
 
This topic ws recently discussed in this thread.

The governing equation is the Tsiolokovsky rocket equation. Applying this equation to a rocket that burns all of its fuel,

\Delta v = v_e\ln\left(\frac {m_\text{rocket}+m_\text{fuel}}{m_\text{rocket}}\right)

Suppose you find you have to load some rocket with a quantity of fuel m_{\text{fuel}|1000\text{mph}} to make the rocket attain a velocity of 1000 mph after burnout. Atfer churning the crank on the rocket equation, the amount of fuel it would take to bring the rocket to 2000 mph is

m_{\text{fuel}|2000\text{mph}} =<br /> m_{\text{fuel}|1000\text{mph}}\left(2+ \frac{m_{\text{fuel}|1000\text{mph}}}{m_\text{rocket}}\right)

In other words, one must more than double the quantity of fuel to double a rocket's final velocity.
 
D H said:
This topic ws recently discussed in this thread.
Thanks - I'm away for a week and look what I miss.
 
D H said:
In other words, one must more than double the quantity of fuel to double a rocket's final velocity.

Indeed. But more of that fuel will be burnt in getting it from 0 to 1000mph than from 1000mph to 2000mph.
 
A little more detail regarding previous post:

The reason it takes more than double the fuel to go from 0 to 1000 mph than from 0 to 2000 mph (or whatever) is because the rocket carries its fuel.

Assume we have some rocket and want to make two test flights with it. The first test flight involves flying the rocket from rest to a final speed of 1000 mph, and the second, rest to 2000 mph. Both tests end with the rocket devoid of all fuel. The amount during the second test of fuel left in the rocket at the point the rocket reaches 1000 mph is exactly the same as the amount of fuel initially placed in the rocket for the first test. In this sense, it takes the same amount of fuel to go from 1000 to 2000 mph as it does from 0 to 1000 mph.

However, the rocket has to first achieve that 1000 mph during the second test. It is the first 1000 mph that costs more. At the start of the second test, the rocket comprises the dry mass of the rocket, the quantity fuel (call this f1) needed to bring the dry mass of the rocket from 1000 to 2000 mph plus the quantity of fuel needed to bring the dry mass of the rocket plus f1 from 0 to 1000 mph.
 
Last edited:
  • #10
chronon said:
Indeed. But more of that fuel will be burnt in getting it from 0 to 1000mph than from 1000mph to 2000mph.
Indeed. We just cross-posted.
 
  • #11
Mentioned in the other thread is that there is work also peformed on the spent fuel as it is ejected behind the rockets engine. If the kinetic energy of both spent fuel, and the rocket (plus it's remaining unspent fuel) are summed, and if the rate of fuel consumption is constant, then thrust will be constant, and the sum of the kinetic energies of spent fuel, rocket (and remaining fuel) will increase linearly with time. This means that the power involved is constant (with a constant thrust).

Also from the other thread, it's easier to grasp this if you consider the rocket to be held in place so that all of the work done by the engine is to acclerate the spent fuel. The terminal velocity of the fuel is constant, and the rate of fuel consumption (mass ejected) is constant, so the kinetic energy of the fuel increases linearly with time.
 
  • #12
From this thread and the other I have a kind of vague impression that rockets are better understood in terms of conservation of momentum than conservation of energy. I think that is because conservation of momentum requires you to think of the exhaust whereas conservation of energy does not.
 
  • #13
Submission1 said:
We are having a debate here at work and we need an answer from some smart folks (that's you).

If you have a rocket ship in space that takes 1 gallon of gas to reach 1000 mph then, negating friction, would it take less, more or the same amount to go from 1000 mph to 2000 mph.

Thanks,
Sub.

You always have to ask, 1000 mph relative to what? A rocket ship just traveling along at constant velocity will never know it. You always need a reference against which you measure your velocity. And, it is in that reference frame where it takes 3 times as much energy to go from 1000 mph to 2000 mph as it does from 0 to 1000 mph.
 
  • #14
DaleSpam said:
From this thread and the other I have a kind of vague impression that rockets are better understood in terms of conservation of momentum than conservation of energy. I think that is because conservation of momentum requires you to think of the exhaust whereas conservation of energy does not.

That is how I prefer to look at things. A conservation of energy viewpoint is tough to do properly. The rocket fuel remaining in the rocket gains kinetic energy as the rocket accelerates. Moreover, some of the released chemical potential energy is wasted in the form of hot exhaust. Failing to account for either leads to erroneous results.

Conservation of linear momentum is a much simpler proposition. Adding conservation of angular momentum makes things a bit hairier. Adding the fact that in a real rocket the center of mass and inertia tensor change as the rocket burns fuel makes things a lot hairer. I wouldn't dream of attacking a non-point mass rocket with fuel located away from the center of mass with a conservation of energy perspective -- unless I was doing so at a micro level and using a CFD model.

The driving reason for investigating a problem from the point of view of any of the conservation principles is that doing so makes the answer fall out. I don't have to use a full-blown CFD model to get a very, very good model of what firing a roket engine does to the state of a vehicle. A full-blown CFD model that takes advantage of all of the conservation laws is needed to characterize behavior. However, CFD models cannot "see the forest for the trees". CFD models examine the spots on a beetle that sits on a tree in a huge forest. Once the behavior has been properly characterized, a conservation of momentum model does wonders.
 
  • #15
So the answer is ... ??
A 1000 kg rocket push a 1 Kg fuel at 1000 * 1000 mph -> the rocket increases its velocity in 1000 mph ( respect to the Frame of Reference it was before starting the engine )
Again
A 999 kg rocket ( the same rocket ) push a 1 Kg fuel at 1000 * 1000 mph -> the rocket increases its velocity in 1000 mph.

( I use very high energy fuel, so we don't have to discuss about carrying the fuel or using Tsiolokovsky formula )
 
  • #16
A kind of new thought on this thread...
This kind of question pops up a lot and there always seems to be (in the mind of the questioner) some kind of disconnect between common-sense examples and the equations.

Is the work-energy theorem the best way to teach people? I didn't get it for many years after that freshman class.

Is there another way?
 
  • #17
TVP45 said:
A kind of new thought on this thread...
This kind of question pops up a lot and there always seems to be (in the mind of the questioner) some kind of disconnect between common-sense examples and the equations.

Is the work-energy theorem the best way to teach people? I didn't get it for many years after that freshman class.

Is there another way?

Im very sorry, but I don't understand your english.
I keep asking: the answer is ...
 
  • #18
alvaros said:
Im very sorry, but I don't understand your english.
I keep asking: the answer is ...

Alvaros,
I wasn't answering your reply. I was just wondering (wandering?) in general about this whole frame of reference question and how it ought to be presented in introductory physics.
What exactly is your example?
 
  • #19
What exactly is your example?

I think my example is clear enough:

A 1000 kg rocket push a 1 Kg fuel at 1000 * 1000 mph -> the rocket increases its velocity in 1000 mph ( respect to the Frame of Reference it was before starting the engine )
Again
A 999 kg rocket ( the same rocket ) push a 1 Kg fuel at 1000 * 1000 mph -> the rocket increases its velocity in 1000 mph.

It seems that the second kg of fuel gives more kinetic energy to the rocket than the first Kg ( ?? )

I was just wondering (wandering?) in general about this whole frame of reference question and how it ought to be presented in introductory physics.

I made a thread "what is a IFR" but everybody seems to have it very clear. I think the main mistakes are representing forces with an arrow -> and talking about IFR as some abstract.
In this problem the forces are between the rocket and the fuel ejected:
fuel <-> rocket
And the IFR is the center of mass of the system ( rocket + fuel ). The IFR always refers to something material ( with mass ).
 
  • #20
alvaros said:
It seems that the second kg of fuel gives more kinetic energy to the rocket than the first Kg.
Yes. Don't forget the KE of the exhaust. It is better to use conservation of momentum principles because they force you to consider the exhaust.

I am trying out some new (for me) applications of old ideas here here, so feel free to point out any mistakes in my logic:

Since the exhaust velocity is constant (assuming the mass of the rocket is large relative to the mass of the fuel) each kg fuel spent gives the same Δp and therefore the same Δv to the rocket.

Each successive kg with its Δv results in a larger ΔKE for the rocket since KE is proportional to v^2.

"But conservation of energy you protest!" The PE of the fuel does not only go into KE of the rocket, but also into the rather large KE of the exhaust.

Because the exhaust is going in the opposite direction of the rocket each successive kg of exhaust gains less KE, exactly compensating the more KE gained by the rocket so that the increased KE of the rocket-exhaust system is always equal to the PE in the spent fuel (neglecting heat).

Bottom line: for rockets always use conservation of momentum so that you cannot neglect the exhaust.
 
Last edited:
  • #21
DaleSpam said:
Yes. Don't forget the KE of the exhaust. It is better to use conservation of momentum principles because they force you to consider the exhaust.

I am trying out some new (for me) applications of old ideas here here, so feel free to point out any mistakes in my logic:

Since the exhaust velocity is constant (assuming the mass of the rocket is large relative to the mass of the fuel) each kg fuel spent gives the same Δp and therefore the same Δv to the rocket.

Each successive kg with its Δv results in a larger ΔKE for the rocket since KE is proportional to v^2.

"But conservation of energy you protest!" The PE of the fuel does not only go into KE of the rocket, but also into the rather large KE of the exhaust.

Because the exhaust is going in the opposite direction of the rocket each successive kg of exhaust gains less KE, exactly compensating the more KE gained by the rocket so that the increased KE of the rocket-exhaust system is always equal to the PE in the spent fuel (neglecting heat).

Bottom line: for rockets always use conservation of momentum so that you cannot neglect the exhaust.

DaleSpam,
This is the sort of example I was asking about. If I were a high school teacher (thank G-d I'm not; that's a hard job), how would I present this example so that students can grasp it? I'm not being in any way critical, any more than I was of Alvaros; I am simply curious about how this can be developed conceptually.
 
  • #22
If I were a teacher in a high-school level physics course I would not even mention conservation of energy in this problem. I would stick entirely with conservation of momentum. You can solve for everything of interest that way, and the conservation of momentum principle does what a good conservation principle should: it simplifies things.

As a teacher I would not introduce conservation of energy into the problem since it does nothing to simplify the problem. If a student asked I would tell them that energy is conserved, but it doesn't make the problem any easier. I think students would understand that.
 
  • #23
At first blush, I agree. Momentum is much easier to deal with than energy. Two questions occur to me:
(1) Can a student grasp the concept of momentum without being sidetracked by preconceptions about energy?
(2) Is the calculation of change of momentum rather than absolute momentum sensible?
Thanks for the reply.
 
  • #24
DaleSpam:
Because the exhaust is going in the opposite direction of the rocket each successive kg of exhaust gains less KE, exactly compensating the more KE gained by the rocket so that the increased KE of the rocket-exhaust system is always equal to the PE in the spent fuel (neglecting heat).

Wrong, the change in kinetic energy on the fuel is 1000 times the change in kinetic energy on the rocket.

Momentum is an abstract concept, its much easier the 3rd Newtons law: the burning fuel pushes the rocket and the rocket pushes the fuel fuel <-> rocket
( you see the double arrow <-> , all forces ( ? ) are double arrow )
( It seems, as I read here, that the conservation of momentum is more "universal" than 3rd Newtons law, but, in this case, both laws are the same and true )

But, at the end, there isn't any clear answer to the problem.
 
  • #25
Invoking Newton's third law on this problem is in a sense more ad-hoc and more abstract than using conservation of momentum with regard to this problem. The concept of force (Newton's second law) is very abstract; anything change to an object's momentum involves some force. Applying conservation of momentum is no less abstract than applying Newton's third law and yields a deeper answer.

Put the spaceship in deep space, far from any massive object, so that there are no measurable external forces acting on the vehicle. Now, what exactly is the force that is making the spaceship accelerate? By assumption, there are no external forces. You can say posit some ad-hoc force F that results from burning the fuel and get an answer via Newton's second law. Note well: Since the rocket's mass is changing, the simpler form F=ma is not valid here. We have to use F=dp/dt instead.

F<br /> = \frac{dp_r} {dt}<br /> = \frac{d}{dt} ( m_r \, v_r )<br /> = \dot m_r v_r}<br /> + m_r \, a_r<br />

Solving for the rocket's acceleration,

a_r =<br /> \frac {F} {m_r}<br /> - \frac {\dot m_r} {m_r} v_r}<br />

This is not very satisying. What exactly is this force? It's purely ad-hoc for one thing. Moreover, it will turn out that the force is frame-dependent.

Here is how things turn out from conservation of momentum point of view. For this derivation, I will use some math that mathematicians don't particular like but physicists use willy-nilly -- things \Delta v. Things can be done more formally using continuum physics (classical treatment of gases), but that is a lot messier.

Nomenclature:
\vec v_r(t) Rocket velocity at time t, inertial observer
\vec v_e(t) Rocket exhaust velocity at time t, relative to vehicle velocity
m_r(t) Rocket mass at time t
\dot m_f(t) Rate at which rocket consumes fuel att

Over a small time interval \Delta t, the rocket will eject a small mass of fuel \dot m_f(t)\,\Delta t. At the start of the interval, the rocket has mass m_r(t), velocity \vec v_r(t), and momentum m_r(t) \, \vec v_r(t). At the end of the interval, the rocket has mass, velocity, and linear momentum

m_r(t+\Delta t) = m_r(t)-\dot m_f(t)\,\Delta t
\vec v_r(t+\Delta t) = \vec v_r(t)+\Delta \vec v_r(t)
\vec p_r(t+\Delta t) = (m_r(t) -\dot m_f(t)\,\Delta t)\, (\vec v_r(t)+\Delta \vec v_r(t))

The bit of ejected fuel carries some momentum from the vehicle. The mass, inertial observer velocity, and momentum of the exhaust are

\Delta m_e(t) = \dot m_f(t)\,\Delta t
\vec v_{e_{\text{inertial}}}) = \vec v_r(t)+\vec v_e(t)
\Delta \vec p_e(t+\Delta t) =<br /> \dot m_f(t)\,\Delta t\, (\vec v_r(t)+\vec v_e(t))[/tex]<br /> <br /> The momentum of the rocket+exhaust at the end of the time interval is thus<br /> \vec p_{r+e}(t+\Delta t) =&lt;br /&gt; (m_r(t) -\dot m_f(t)\,\Delta t)\, (\vec v_r(t)+\Delta \vec v_r(t)) +&lt;br /&gt; \dot m_f(t)\,\Delta t\, (\vec v_r(t)+\vec v_e(t))&lt;br /&gt;<br /> <br /> Dropping the second-order term \Delta t \Delta \vec v_r(t) and simplifying,<br /> <br /> \vec p_{r+e}(t+\Delta t) =&lt;br /&gt; m_r(t)\,\vec v_r(t)+&lt;br /&gt; m_r(t) \, \Delta \vec v_r(t) +&lt;br /&gt; \dot m_f(t)\,\Delta t\, \vec v_e(t)&lt;br /&gt;<br /> <br /> Assuming no external forces act on the rocket and the ejected fuel during this time interval, the rocket and the ejected fuel form a closed system. Momentum is conserved in a closed system, so \vec p_{r+e}(t+\Delta t)=\vec p_r(t)[/tex]:&lt;br /&gt; &lt;br /&gt; &amp;lt;br /&amp;gt; m_r(t)\,\vec v_r(t)+&amp;lt;br /&amp;gt; m_r(t) \, \Delta \vec v_r(t) +&amp;lt;br /&amp;gt; \dot m_f(t)\,\Delta t\, \vec v_e(t) = m_r(t)\,\vec v_r(t)&amp;lt;br /&amp;gt;&lt;br /&gt; &lt;br /&gt; or&lt;br /&gt; &lt;br /&gt; &amp;lt;br /&amp;gt; m_r(t) \, \Delta \vec v_r(t) +&amp;lt;br /&amp;gt; \dot m_f(t)\,\Delta t\, \vec v_e(t) = 0&amp;lt;br /&amp;gt;&lt;br /&gt; &lt;br /&gt; Dividing by \Delta t and taking the limit \Delta t \to 0,&lt;br /&gt; &lt;br /&gt; &amp;lt;br /&amp;gt; \frac {d\vec v_r(t)}{dt} = - \, \frac {\dot m_f(t)} {m_r(t)} \, \vec v_e(t)&amp;lt;br /&amp;gt;&lt;br /&gt; &lt;br /&gt; This is the equation for the acceleration of the rocket at time t.&lt;br /&gt; &lt;br /&gt; By conservation of mass, the time derivative of the rocket&amp;#039;s mass is just the additive inverse of the fuel consumption rate: \dot m_r(t) = -\dot m_f(t). If the relative exhaust velocity is a constant vector, both the left and right hand sides of the above acceleration equation are integrable. Integrating from some initial time t_0 to some final time t_1 yields&lt;br /&gt; &lt;br /&gt; &amp;lt;br /&amp;gt; \vec v_r(t_1) - \vec v_r(t_0) = \ln\left(\frac{m_r(t_1)}{m_r(t_0)}\right) \vec v_e&amp;lt;br /&amp;gt;&lt;br /&gt; &lt;br /&gt; This is the Tsiolokovsky rocket equation. Since the final mass is smaller than the initial mass, the logarithm will be negative. The change in velocity is directed against the exhaust direction.
 
Last edited:
  • #26
alvaros said:
Wrong, the change in kinetic energy on the fuel is 1000 times the change in kinetic energy on the rocket.
Are you sure? Then where does the extra KE come from when you burn the second kg of fuel?
 
  • #27
OK, I finished now. Is this (post #25) what you guys are looking for?
 
  • #28
Ye, I still don;t see a concensus. Let's simplify the situation momentarily and ignore the change in mass due to fuel. Does it not take the same energy to go from 0 to 1000 as 1000 to 2000?
 
  • #29
DaveC426913 said:
Ye, I still don;t see a concensus. Let's simplify the situation momentarily and ignore the change in mass due to fuel. Does it not take the same energy to go from 0 to 1000 as 1000 to 2000?

In what reference frame? We have to agree how we are seeing this in order to get the same answer.
 
  • #30
All other things being equal, of course it takes the same energy to go from 0 to 1000 as 1000 to 2000. It takes a certain amount of fuel to go from 0 to 1000 MPH in a reference frame in which the rocket is initially at rest. Exact same circumstances, except now the observer sees the rocket with an initial velocity of 1000 MPH opposite the thruster direction. The final velocity will be 2000 MPH. The only thing that matters is the change in velocity.

More important is the amount of fuel required to attain a delta V of 1000 MPH versus a delta V 2000 MPH. A naive argument from a conservation of energy viewpoint says it should take four times as much fuel because E=1/2mv^2. Applying the rocket equation says something quite different. I'll look at this two ways.

First, suppose we initially load the rocket with a fixed amount of fuel m_f capable of bringing the rocket to a very high speed. Denoting the mass of the dry rocket plus initial fuel load as m_0 and the mass after the rocket has achieved some change in velocity \Delta v as m_0 + \Delta m_f(\Delta v), the rocket equation becomes

<br /> \Delta v = \ln\left(1-\frac{\Delta m_f(\Delta v)}{m_0}\right) \vec v_e<br />

The fuel required to double the \Delta v is given by

<br /> \ln\left(1-\frac{\Delta m_f(2\Delta v)}{m_0}\right) =<br /> 2 \ln\left(1-\frac{\Delta m_f(\Delta v)}{m_0}\right)<br />

or

<br /> 1-\frac{\Delta m_f(2\Delta v)}{m_0} =<br /> \left(1-\frac{\Delta m_f(\Delta v)}{m_0}\right)^2<br />

Simplifying,

<br /> \Delta m_f(2\Delta v) =<br /> 2 \Delta m_f(\Delta v) - \frac{\Delta m_f(\Delta v)^2}{m_0}<br />

It takes less than twice the fuel to double the rocket's velocity, assuming the rocket is initially loaded with at least enough fuel to reach that doubled velocity.The above caveat begs the question, What if the rocket isn't initially loaded with the requisite amount of fuel to reach the doubled delta V? The second case investigates this problem. Suppose now the rocket is only loaded with enough fuel to achieve some final delta V. How much more fuel needs to be added to double this final delta V? In this case, it is the final mass that is constant. Denoting the mass of the dry rocket m_r and the initial fuel loaded needed to achieve some final delta V as m_f(\Delta v), the rocket equation becomes

<br /> \Delta v = \ln\left(\frac{m_r}{m_r+m_f(\Delta v)}\right) \vec v_e<br /> = -\, \ln\left(1+\frac{m_f(\Delta v)}{m_r}\right) \vec v_e<br />

The fuel required to double the final \Delta v is given by

<br /> \ln\left(1+\frac{m_f(2\Delta v)}{m_r}\right) =<br /> 2 \ln\left(1+\frac{m_f(\Delta v)}{m_r}\right)<br />

or

<br /> 1+\frac{\Delta m_f(2\Delta v)}{m_r} =<br /> \left(1+\frac{\Delta m_f(\Delta v)}{m_r}\right)^2<br />

Simplifying,

<br /> m_f(2\Delta v) =<br /> 2 \Delta m_f(\Delta v) + \frac{\Delta m_f(\Delta v)^2}{m_r}<br />

It takes more than twice the fuel to double the rocket's final velocity, assuming the rocket consumes all of the available fuel.
 
  • #31
Bottom line: The question "how much fuel is needed to go from 0 to 1000 MPH versus going from 1000 to 2000 MPH" is an ill-phrased question. If you want an unambiguous answer, ask an unambiguous question.

----------

Note well: The above analysis ignored a lot of details, all of which are very important in real rocket science. The rocket was implicitly assumed to be a point mass and was explicitly assumed to be traveling through empty space. Real rockets have thrusters located away from the center of mass, the center of mass moves as the rocket consumes fuel, the atmosphere adds drag, and perform less efficiently (lower specific impulse) in the atmosphere than in space.
 
  • #32
Hi DH,

Thank you for the very well-worked and informative post. I think it is clear that conservation of momentum is (1) more fundamental than conservation of energy and (2) more general than f=ma. I really see no reason to bring energy considerations into the rocket equations, particularly for teaching purposes.

However, for the purpose of this thread and to demonstrate that energy is conserved I thought it would be useful to expand on your post and include KE terms.

At the beginning of the interval, the rocket has KE
KE_r(t) = 1/2 (m_r(t))(\vec v_r(t))^2

At the end of the interval the KE of the rocket is
KE_r(t+\Delta t) = 1/2 (m_r(t)-\dot m_f(t)\,\Delta t)(\vec v_r(t)+\Delta \vec v_r(t))^2

The KE of the exhaust is
KE_e(t+\Delta t) = 1/2 (\dot m_f(t)\,\Delta t)(\vec v_r(t)+\vec v_e(t))^2

So the change in KE for the rocket and exhaust system is
\Delta KE(t+\Delta t)) = (KE_e(t+\Delta t)+KE_r(t+\Delta t))-KE_r(t)

By solving the conservation of momentum expression we obtain
\Delta \vec v_r(t) = - \, \frac {\Delta t \,\vec v_e(t)^2 \,\dot m_f(t)\,}{m_r(t)-\Delta t \,\dot m_f(t)\,}

Substituting this into the KE expression and simplifying we obtain
\Delta KE(t+\Delta t) = \frac {\Delta t \, m_r(t) \,\vec v_e(t)^2 \,\dot m_f(t)\,}{2\, m_r(t) - 2 \,\Delta t \,\dot m_f(t)\,}

Dividing by \Delta t and taking the limit \Delta t \to 0,
\frac {dKE(t)}{dt} = \frac {1}{2}\,\vec v_e(t)^2 \,\dot m_f(t)

So, in the end the expression for the change in KE of the whole system (rocket and exhaust) is not a function of the rocket's velocity. It is, in fact, exactly equal to the KE of the exhaust in the rocket's comoving frame, which should have been expected from the beginning although it surprised me. This change in KE is then equal to the useable chemical energy in the fuel (chemical energy minus engine ineffeciencies such as waste heat), so energy is conserved.

Note, however, that although energy is conserved, energy conservation cannot be used by itself to solve this problem. Without conservation of momentum there is no way to determine \Delta \vec v_r(t). In other words, we know that some of the chemical energy goes into kinetic energy of the rocket and rest goes into kinetic energy of the exhaust, but without conservation of momentum there is no way to determine what fraction goes to each. So, since the problem can be solved by conservation of momentum alone, and since the problem cannot be solved by conservation of energy alone, the problem should be approached strictly with a conservation of momentum approach. Energy conservation can be demonstrated, but not used.
 
  • #33
DaleSpam said:
So, in the end the expression for the change in KE of the whole system (rocket and exhaust) is not a function of the rocket's velocity. It is, in fact, exactly equal to the KE of the exhaust in the rocket's comoving frame, which should have been expected from the beginning although it surprised me.
In my previous post, I mentioned the example of a rocket "held" in place, so that the only work done was to the exhaust (spent fuel). In this case it's clear that the KE is related to the exhaust, and extending this to the case where the rocket is moving and other frames of reference are used, the total KE will be the same since the source of the work being done is the same.
 
  • #34
You are exactly right. I read your post about the stationary rocket, but the connection with the moving rocket didn't hit me until I did the math myself. For some reason I thought the moving-rocket case was fundamentally different from the stationary-rocket case. That is why I said that I was surprised by my own result but I should have expected it.
 
  • #35
I expect you are not teachers !
Could anyone give a brief and clear explanation about what happens on the rocket ?
( if possible with numbers )
 
  • #36
alvaros said:
Could anyone give a brief and clear explanation about what happens on the rocket ?

That is exactly what we just did. In post #25 I derived the rocket acceleration and the Tsiolokovsky equation. In post #30 I analyzed what it is involved in doubling a rocket's velocity. Dale did a nice job adding kinetic energy concerns to the analysis in post #32.
 
  • #37
D H said:
Bottom line: The question "how much fuel is needed to go from 0 to 1000 MPH versus going from 1000 to 2000 MPH" is an ill-phrased question. If you want an unambiguous answer, ask an unambiguous question.

You can state your assumptions in the answer - but I would think that the spirit of the OP's question includes the following conditions at a minimum:

1] Ignore mass changes due to fuel consumption

2] Calculate speed wherein the rocket started off at rest wrt to the observer: s=0,t=0. (It seems to me, the OP actually explicitly stated this by saying "0 mph")
 
  • #38
DaveC426913 said:
You can state your assumptions in the answer - but I would think that the spirit of the OP's question includes the following conditions at a minimum:

1] Ignore mass changes due to fuel consumption

2] Calculate speed wherein the rocket started off at rest wrt to the observer: s=0,t=0. (It seems to me, the OP actually explicitly stated this by saying "0 mph")

If I understand your conditions, you are saying the observer remains in a non-accelerated frame (where the rocket used to be at 0 mph relative to that frame) and observes the rocket. Further, the rocket uses a propulsion system that does not decrease mass. And, we don't have any messy nonconservative stuff going on. Is this correct?

If so, there is clearly 3 times as much fuel required to go from 1000 mph to 2000 mph as was required to go from 0 mph to 1000 mph, all as measured from the non-accelerated observer's point of view.


This, I think, is the example often used by high school Physics teachers, and often explained incorrectly. It might be better to have the student calculate free-fall in a vacuum on a very large planet.
 
  • #39
The answer to the question "How much fuel does it a rocket take to go from 0 to 1000 MPH versus 1000 to 2000 MPH" is the same, more, or less, depending on what exactly is being asked. In this post I will ask the question in three ways.


1. All other things being equal, how much fuel does it a rocket take to go from 0 to 1000 MPH versus 1000 to 2000 MPH?
Answer: The same amount of fuel. "All other things being equal" means the same rocket loaded with the same quantity of fuel; the only difference is the initial velocity. The only things that matter are the change in velocity and the "mass ratio", the ratio of the total vehicle mass at the end to the total vehicle mass at the start. The delta-V is 1000 MPH in both cases and the mass ratios are the same thanks to the assumption of "all other things being equal.


2. A rocket goes from 0 to 2000 MPH. How much fuel did it take to go from 0 to 1000 MPH versus 1000 to 2000 MPH?
Answer: It took more more fuel to go from 0 to 1000 MPH than from 1000 to 2000 MPH. It takes a certain amount of fuel to go from 1000 to 2000 MPH. During the first part of the flight (0 to 1000 MPH) that extra fuel to achieve the final 1000 MPH of delta-V is just dead weight. The mass ratios for each leg (0 to 1000 MPH versus 1000 to 2000 MPH) of the journey must be equal to achieve the same 1000 MPH delta-V. The mass ratio for the second leg of the journey is
m_r/(m_r+\Delta m_f(leg 2))
and for the first leg, it is
(m_r+\Delta m_f(leg 2))/(m_r+\Delta m_f(leg 2)+\Delta m_f(leg1))
Equating these two ratios and simplifying,
\Delta m_f(leg1) = \Delta m_f(leg2)*(1+\Delta m_f(leg2)/m_r)


3. A rocket goes from 0 to 1000 MPH and then runs out of fuel. Assuming the fuel tanks can hold the extra fuel, how much more fuel needs to be added to make the rocket go from 0 to 2000 MPH?
Answer: The quantity of fuel needs to be doubled, and then some. In other words, for this version of the question it takes more fuel to go from 1000 to 2000 MPH than 0 to 1000 MPH. In this case, the rocket has the same final mass at the end of each mission. It is the initial fuel load that determines whether the rocket goes from 0 to 1000 MPH or 0 to 2000 MPH. Here the mass ratios are related by
2\ln(m_r/(m_r+m_f(1000 MPH))) = ln(m_r/(m_r+m_f(2000 MPH))).
Expanding this relation and simplifying,
m_f(2000 MPH) = m_f(1000 MPH)*(2+m_f(1000 MPH)/m_r)[/tex].<br /> The extra fuel needed to go the extra 1000 MPH is<br /> m_f(2000 MPH)-m_f(1000 MPH) = m_f(1000 MPH)*(1+m_f(1000 MPH)/m_r)
 
Last edited:
  • #40
alvaros said:
I expect you are not teachers !
Could anyone give a brief and clear explanation about what happens on the rocket ?
( if possible with numbers )
Here is the "Ritalin summary": A rocket ejects exhaust off the back, momentum is conserved, so the rocket moves forward. It really is that simple conceptually.

Here is a concrete example you could use for teaching after deriving the equation given by DH:

A rocket is initially at rest next to a space station in deep space. The rocket consists of 1000 kg of fuel and 100 kg of vehicle/payload. The exhaust velocity is 5 km/s.

After the rocket burns its fuel, what is its final velocity? (12 km/s)

What is the final momentum of the vehicle/payload? (1200 kg km/s)

What is the final total momentum of the exhaust gas? (-1200 kg km/s)

What is the average velocity of the exhaust gas? (-1.2 km/s)

Why is the average velocity of the exhaust gas not equal to the exhaust velocity? (The exhaust velocity is measured relative to the rocket, so as the rocket changes its velocity relative to the space station so does the exhaust it ejects. For example, at the end, when the rocket is moving at 12 km/s the exhaust gases are moving at 7 km/s relative to the space station, not -5 km/s)

You should stop there in a real class, but if one of your students asks about conservation of energy then you can derive my equations and show them that the final KE of the vehicle/payload is 7.2 GJ, the work done by the fuel is 12.5 GJ, and by conservation of energy the KE of the exhaust is 5.3 GJ.
 
  • #41
TVP45 said:
there is clearly 3 times as much fuel required to go from 1000 mph to 2000 mph as was required to go from 0 mph to 1000 mph, all as measured from the non-accelerated observer's point of view.
No, this is wrong. See the derivations above by me and DH. You are trying to use conservation of energy but you are neglecting the KE of the exhaust.

The same amount of rocket fuel is required to move a given mass from 0 to 1000 mph as is required to move that mass from 1000 to 2000 mph. Use conservation of momentum!
 
Last edited:
  • #42
Maybe we should take a poll...
Highest votes = correct answer.

Physics by consensus...:biggrin:
 
  • #43
You can also use conservation of energy to derive an upper bound on the exhaust velocity. Chemical potential energy is often expressed in units of kilojoules per mole. Dividing by the molar mass yields another form of expressing the chemical potential energy, typically megajoules/kilogram. Well, joules/kilogram is just another way of saying (meters/second) squared. The square root of the chemical potential energy is the maximum exhaust velocity. An exhaust velocity higher than this limit would violate conservation of energy. In practice, the exhaust velocity will be less than this upper limit because some of the energy of combustion is wasted in the form of hot exhaust gas.

==========

I haven't mentioned this yet, but propulsion engineers often use something called specific impulse to characterize the efficiency of a rocket instead of the exhaust velocity. Specific impulse has units of time, and is directly proportional to the exhaust velocity via Isp = v_e / g_0, where g_0 = 9.80665 m/s^2, one Earth standard gravity.
 
Last edited:
  • #44
DaleSpam said:
No, this is wrong. See the derivations above by me and DH. You are trying to use conservation of energy but you are neglecting the KE of the exhaust.

The same amount of rocket fuel is required to move a given mass from 0 to 1000 mph as is required to move that mass from 1000 to 2000 mph. Use conservation of momentum!

No. I was replying to a previous post and I said "If I understand your conditions...Further, the rocket uses a propulsion system that does not decrease mass" I understand your and DH's derivations (and I quite agree, for the conditions you cite, but I was trying to reach a clearer understanding of a previous question.

I believe there is a general confusion that occurs for three primary reasons:
(1) Most questions do not clearly state the observer's reference frame;
(2) Many questions assume rocket fuel has no exhaust;
(3) There is a facile skipping back and forth between dF/dt = 0 and dF/dx = 0 when talking about constant force.

I have seen this confusion dozens (hundreds?) of times and I think there is not a lucid explanation presented in most general physics courses.

Can anybody raise Arnold Arons from the dead to help? Did he ever look at this in any detail?
 
  • #45
TVP45 said:
"If I understand your conditions...Further, the rocket uses a propulsion system that does not decrease mass" I understand your and DH's derivations (and I quite agree, for the conditions you cite, but I was trying to reach a clearer understanding of a previous question.
OK, point taken and caveat accepted.

However, any propulsion system that will work in space will have to work via conservation of momentum. So it will still be best to analyze it wrt conservation of momentum rather than energy. I think that this is the primary cause for confusion, trying to apply a conservation law when it does nothing to simplify the problem.
 
  • #46
DaleSpam said:
OK, point taken and caveat accepted.

However, any propulsion system that will work in space will have to work via conservation of momentum. So it will still be best to analyze it wrt conservation of momentum rather than energy. I think that this is the primary cause for confusion, trying to apply a conservation law when it does nothing to simplify the problem.

Yes, you're right.

I think the reason so many teachers ask questions about rocket ships is that they think that's a good way to avoid friction, drag, and gravity, and of course they ignore the fact that rocket engines are fuel hogs. They might be better off just putting a streetcar on a frictionless track, with a 3rd rail, and low enough speed that drag doesn't screw it up and use that as an example.
 
  • #47
The thrust from the rocket is due to the change in speed (acceleration) of the fuel. From a non-accelerating observer with the same initial velocity of the rocket, as fuel is used, the speed of both the rocket and it's remaining fuel increase. The amount of thrust generated is the same regardless of the velocity of the rocket. To a non-accelerating observer, power varies with the perceived velocity, since thrust remains constant (as long as the rate of fuel consumption is constant). When trying to calculate the work done, and change in KE, both the KE of the exhaust and the rocket (and it's remaining fuel) need to be taken into account.

Gravity provides a similar situation, the application of force is independent of the velocity of the objects involved, and only depends on the total mass and distance between the objects.

In the case of a car, the point of application is between car and pavement, and as the speed differential between car and pavement increases, more power is required to maintain the same force at the point of application. Since the engine of a car has a maximum power output, then in the ideal situation where a CVT (continuously variable transmission) is used to keep the engine running at maximum power, force at the driven tires will decrease linearly with speed.
 
Last edited:
  • #48
TVP45 said:
They might be better off just putting a streetcar on a frictionless track, with a 3rd rail, and low enough speed that drag doesn't screw it up and use that as an example.
Jeff Reid said:
In the case of a car, the point of application is between car and pavement, and as the speed differential between car and pavement increases, more power is required to maintain the same force at the point of application.
I agree with both of you. Use rockets to teach conservation of momentum, use cars or trains (neglecting friction) to teach conservation of energy.
 
  • #49
DaleSpam said:
I agree with both of you. Use rockets to teach conservation of momentum, use cars or trains (neglecting friction) to teach conservation of energy.

Thanks to all who responded to my comment. I now understand the apparent paradox and know how to reconcile it. Now all I need is a good linguist to help me explain it.
 

Similar threads

Replies
4
Views
3K
2
Replies
52
Views
7K
Replies
30
Views
3K
Replies
6
Views
4K
  • Poll Poll
Replies
12
Views
2K
2
Replies
96
Views
9K
Replies
30
Views
7K
Back
Top