Rod-Spring System Homework: Verifying Parts a) & b)

ghostfolk
Messages
58
Reaction score
1

Homework Statement



magnet.png

I'm really looking for a verification on parts a) and b), but I'll add what I did with part c) without going to into too much detail. I'm posting this question mainly due to part d). I feel that I have every part before this right, but I'm not getting any symmetric matrices.

Homework Equations


##T=\frac{1}{2}mv^2##

The Attempt at a Solution


a)##U=\dfrac{mgL}{2}\cos{\phi}+\dfrac{k}{2}(x^2+L^2(\cos{\phi})^2)##
b)##x_{cm}=x-\dfrac{L}{2}\sin(\phi)##, ##\dot{x_cm}=1-\dfrac{L}{2}\dot{\phi}\cos{\phi}##
##z_{cm}=\dfrac{L}{2}\cos(\phi)##, ##\dot{z_cm}=-\dfrac{\dot{\phi}}{2}L\sin(\phi)##
##T=\dfrac{mL^2\dot{\phi}^2}{6}+\dfrac{m}{2}(1-L\dot{\phi}\cos{\phi})##
c) I know for part c) we can just use the Lagrangian of the system, then find the Euler-Lagrange and let the acceleration in the ##\phi## and ##x## directions be zero.
 
Last edited:
Physics news on Phys.org
One mistake I see is the first term in ##\dot{x}_\text{cm}##. You're supposed to differentiate with respect to ##t##, not ##x##.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top