Rodrigues' rotation formula from SO(3) comutator properties

  • #1
302
17
Is any way to get Rodrigues' rotation formula from matrix exponential
\begin{equation}
e^{i\phi (\star\vec{n}) } = e^{i\phi (\vec{n}\cdot\hat{\vec{S}}) } = \hat{I} + (\star\vec{n})\sin\phi + (\star\vec{n})^2( 1 - \cos\phi ).
\end{equation}
using SO(3) groups comutators properties ONLY like
\begin{equation}\hat S_k\hat S_j-\hat S_j\hat S_k=i\varepsilon_{kjl}\hat S_l,\qquad \hat S^2=2\hat I ?\end{equation}
where ##\vec{n} = (n_x,n_y,n_z)^{\top}##, ##\vec{n}^2 = 1##, and
\begin{equation}\label{}
(\vec{n}\cdot\hat{\vec{S}}) = \star\vec{n} =
\begin{pmatrix}
0 & -n_z & n_y \\
n_z & 0 & -n_x \\
-n_y & n_x & 0 \\
\end{pmatrix},
\end{equation}

\begin{multline}\label{}
\hat{\vec{S}} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & i \\
0 & -i & 0 \\
\end{pmatrix}
\vec{e}_x
+
\begin{pmatrix}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0 \\
\end{pmatrix}
\vec{e}_y
+
\begin{pmatrix}
0 & i & 0 \\
-i & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix}
\vec{e}_z =
\hat{S}_x \vec{e}_x +
\hat{S}_y \vec{e}_y +
\hat{S}_z \vec{e}_z
.
\end{multline}

References: https://en.wikipedia.org/wiki/Axis–angle_representation#Exponential_map_from_so(3)_to_SO(3)
 
Last edited:
  • #2
The problem you will run into is that you will be expanding a commutator action [when you exponentiate] and that's not associative. [You want to work with an associative product when expanding an exponential.]

For a purely algebraic derivation you can work it through most easily (imnsho) utilizing quaternion algebra. You have to be aware that in that algebra you must act adjointly (left action yields the spinor representation).

I suggest working with quaternions in scalar+3-vector format. The quaternion product then manifests as:
[tex] (a+\mathbf{u})(b+\mathbf{v}) = ab+a\mathbf{v}+b\mathbf{u} -\mathbf{u}\bullet\mathbf{v}+\mathbf{u}\times\mathbf{v}[/tex] where ##\times## is the cross product and ##\bullet## the dot product.

The adjoint action is:
[tex]R_{\theta,\mathbf{u}} \mathbf{v} = e^{\theta\mathbf{u}/2} \mathbf{v}e^{-\theta\mathbf{u}/2}[/tex]
where ##\mathbf{u}## is a unit vector in the direction about which you rotate ( 👎 right hand rule). The exponential of a pure quaternion is then a version of the Euler formula as ##\mathbf{u}^2 = -1##:
[tex] e^{\theta\mathbf{u}/2} = \cos(\theta/2)+\mathbf{u}\sin(\theta/2)[/tex] Work out the adjoint action of this on ##\mathbf{v}## and play with your vector product identities and half-angle trig. identities and the Rodigues' formula will pop right out.
 
  • Like
Likes sergiokapone
  • #3
There is an analog of the binomial theorem for noncommutative associative algebras. It is quite useful when the commutator assumes a special form. However, it’s not strictly necessary in this case - for so(3), it’s simple enough just to use the characteristic polynomial ##\mathbf{[x]_\times^3}+\mathbf{|x\|^2[x]_\times}=0## to compute the exponential.
 
  • Like
Likes MisterX and jambaugh

Suggested for: Rodrigues' rotation formula from SO(3) comutator properties

Replies
5
Views
992
Replies
6
Views
2K
Replies
14
Views
731
Replies
1
Views
598
Replies
8
Views
789
Replies
4
Views
615
Replies
4
Views
695
Replies
3
Views
623
Replies
11
Views
721
Back
Top