Rotation angular velocity of a turntable

AI Thread Summary
The discussion revolves around calculating the rotation angular velocity of a turntable when a block is shot outward. The turntable has a mass of 170g and a diameter of 30.0 cm, rotating at 66.0 rpm, while a 25.0g block is initially at the center. The conservation of momentum equation is applied, but initial calculations yield incorrect results, prompting a reevaluation of the moment of inertia for the turntable. Adjusting the moment of inertia to include the correct formula leads to a new angular velocity of 5.42 rad/s, which is suggested as a more accurate answer. The conversation emphasizes the importance of careful calculations and rechecking formulas for accurate results.
lilyE
Messages
5
Reaction score
0
I've spent at least an hour trying to figure this out, but can't seem to figure out how to solve this.

1. Homework Statement

A 170g , 30.0-cm-diameter turntable rotates on frictionless bearings at 66.0rpm . A 25.0g block sits at the center of the turntable. A compressed spring shoots the block radically outward along a frictionless groove in the surface of the turntable.

What is the turntable's rotation angular velocity when the block reaches the outer edge?

Homework Equations


Conservation of momentum: Ii*wi = If*wf

The Attempt at a Solution


I(turntable) = Mr^2 = (.170 kg)(.15 m)^2 = 3.825*10^-3 kg m^2
I(block)o = mr^2 = 0
I(block)f = mr^2 = (.025 kg)(.15 m)^2 = 5.265*10^-4 kg m^2
wi = ((66 rpm)(2pi))/60 = 6.91 rad/s
I(turntable+block)f = 3.825*10^-3 + 5.265*10^-4 = 4.3875*10^-3 kg m^2

(3.825*10^-3)(6.91) = (4.3875*10^-3)wf
0.1826 = (4.3875*10^-3)wf
wf = 6.02 rad/s -- wrong

Initially, I tried using conservation of energy, and ended up with 5.52 rad/s. The program told me "not quite" and suggested a rounding error, so I think 5.52 might be close to the right answer, but I can't seem to figure out why I'm not getting it. Any help would be much appreciated!
 
Last edited:
Physics news on Phys.org
I think you should recheck the equation of ##I_{turntable}##.
 
Would it just be 1/2*(.170)(.15)? That's what I had at first, but I wasn't sure if that was correct or not.
 
If I use Iturntable = (0.5)(0.17)(0.15)2, I get Iturntable = 1.9125 * 10-3 kg m2. Plugging this in, I get a final answer of 5.42 rad/s. Does this seem right?
 
Believe yourself.
 
By the way, due to the error generated by calculating, recommend you to calculate at the last pace.
You can get the best result.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top