When does bifurcation occur and what type(s) of bifurcation are they?

  • Thread starter Thread starter totoroooo
  • Start date Start date
  • Tags Tags
    Pulley Rotation
totoroooo
Messages
2
Reaction score
0
A light wheel of radius a has a uniform semicircular rim of mass M, and my rotate freely in a vertical plane about a horizontal axis through its center. A light string passes around the wheel and suspends a mass m. You may assume that this mechanical system is governed by the equation:
(M+m)a^2 (d^x/dt^2)= ag(m -2Msin(x)/(pi))
where x is the angle between teh downward vertical and the diameter through the center of mass of the heavy rim.

where does bifurcation occur and what type(s) of bifurcation are they? how does the wheel behave when k is large?
 
Physics news on Phys.org
You have to show some effort in order to get help. Please read the guidelines.
 
oh i am sorry about that.

note that k in the question refers to m/M.

so i think when k is large, d^2(x)/dt^2 tends to g/a, which means the wheel behaves like a simple pendulum??

and one of the equilibrium points is, of course, (k,x) = (0,0). then (0, pi) and (0,2*pi) are equilibrium points as well.

another observation is when k = 2/pi, sin (x) = 1. i think bifurcation occurs here, but i am not sure what would happen when k>(2/pi), becuase it seems like that means sin(x) >1...
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top