Rotational inertia, angular speed, and kinetic energy

AI Thread Summary
The discussion centers on a physics problem involving two skaters who rotate around a pole after grabbing it while skating towards each other. Key points include the need to apply conservation of angular momentum to determine the new angular speed after the skaters pull closer together, rather than simply calculating based on assumed radius and velocity. The kinetic energy of the system changes because the skaters do work to pull themselves in, adding energy to the system. The initial calculations for angular speed and kinetic energy were incorrect due to overlooking this principle. Overall, the conservation of angular momentum is crucial for solving the problem accurately.
bonekrushur
Messages
3
Reaction score
0

Homework Statement



Two skaters, each of mass 50 kg, approach each other along parallel paths separated by 4.0 m. They have opposite velocities of 1.7 m/s each. One skater carries one end of a long pole with negligible mass, and the second skater grabs the other end of it as she passes. The skaters then rotate around the center of the pole. Assume that the friction between skates and ice is negligible.

(a) What is the radius of the circle they now skate in?
(b) What is the angular speed of the skaters?
(c) What is the kinetic energy of the two-skater system?
(d) Next, the skaters pull along the pole until they are separated by 0.7 m. What is their angular speed then?
(e) Calculate the kinetic energy of the system now.


Homework Equations



w= v/r
ke= 0.5*I*w^2


The Attempt at a Solution



I have figured out parts (a), (b), and (c). For part (d), I used the same process as in part (b). In (d), I assumed that the new radius was .35 m, and the velocity was still 1.7. So, 1.7/.35 should equal the new angular speed, but that answer does not work. In part (e), I still used what I think is the new radius, .35 m, and put the values into the Kinetic energy equation: 0.5*(50*(.35)^2+50*(.35)^2)*(1.7/.35)^2 = 0.5*I*w^2. This answer does not work either, but I have to be missing something in part (d) to begin with, and I have to get that first anyway to solve (e). Does anyone see what I'm forgetting here? Thanks.
 
Physics news on Phys.org
bonekrushur said:
In (d), I assumed that the new radius was .35 m,

So far so good. o:)

and the velocity was still 1.7.

I think that's where you went wrong. :frown:

Use conservation of angular momentum for part (d). The only things acting on the system are the skaters themselves, thus there are no external torques, which means that conservation of angular momentum applies. Set the angular momentum, before and after the skaters pull themselves closer together, equal to each other. Solve for the new \omega.

Why does the kinetic energy change? The skaters have to do work to pull themselves inwards. The skaters are adding energy to the system in the form of work. But change in kinetic energy or not, angular momentum is still conserved.
 
Thanks. I got it.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top