Rotational Mechanics (Conveyor belt)

AI Thread Summary
The discussion focuses on calculating the distance a conveyor belt moves and the power required to accelerate a pulley wheel. The pulley, with a diameter of 0.4m and mass of 50KG, undergoes three phases: acceleration, constant velocity, and deceleration. The total angular displacement calculated is 75 radians, translating to a distance of 15 meters for the belt. For power calculations, there is confusion regarding the correct method, as one participant suggests using torque and angular velocity while another emphasizes the need for average power based on total work done over time. The key takeaway is that average power should be derived from the change in kinetic energy rather than simply multiplying torque by final velocity.
paul9619
Messages
11
Reaction score
0

Homework Statement



A 0.4m diameter, 50KG, solid pulley wheel is used to derive a conveyor belt system on a production line. The belt is very light and it's mass can be taken as zero. The pulley wheel is accelerated from rest at 2 rads/s^2 for 3 secs, then rotated at a constant velocity for a further 10 secs, before being decelerated uniformly back to rest in 2 secs.

1) How far does the belt move during the whole 15 secs?
2) What power is required to accelerate the pulley wheel during the acceleration phase (i.e) during initial 3 secs.

Homework Equations



(a) w(angular velocity) = Wo (Intial angular velocity) + & (angular acceleration) x t (time)
(b) @(Pheta) = Wo x t + 1/2&t^2

The Attempt at a Solution



I split the calculations into 3 parts Part A - initial acceleration phase (3 secs). Part B - Constant velocity phase (10 secs). Part C - deacceleration phase.

For part A I used the formula (a) to work out the angular velocity at 6 rads/s. I then used formula (b) to find the angular displacement of 9 rads.

For part B I used the formula (b) to work out the angular displacement as 60 rads. (no acceleration just an intial velocity)

For part C I rearranged formula (a) to find the angular deceleration which was -3 rad/s^2. i then put this value into formula (b) to get 6 rads.

I then added up all the angular displacements to give me 9+60+6 = 75 rads. I then converted this to revolutions, so 75/2Pi to give 11.94. The distance traveled is then the circumference of the wheel (Pi x d) multiplied by the revolutions which I worked out at 15 meters. Thats my answer for question 1.

For question 2 I am now a little confused. I have done it this way.

using the following formulas

Radius of Gyration (k) = 0.707 x radius = 0.707 x 0.2 = 0.1414
Moment if Inertia (J) = mk^2 = 50KG x (0.1414)^2 = 0.999698

I have Torque = J x angular acceleration = 0.999698 x 2 rads/s^2 = 2 N/m

Power = Torque x angular velocity = 2N/m x 6 rads/s = 12 watts.

Now I also have a companion who has attempted this question and he tried it this way:

KE rot = 1/2Jw^2= 17.99 Joules.

He says Torque = KErot/angular displacement = 18/9 = 2 N/m

The power = Torque x speed = 2 x (6 x 2Pi) = 75.4 watts

I am confused as to what the actual answer should be for part 2. Any pointers would be much appreciated.
 
Physics news on Phys.org
paul9619 said:
I am confused as to what the actual answer should be for part 2. Any pointers would be much appreciated.

The angular velocity is not constant. The instantaneous power is changing during the acceleration phase. You cannot use torque times final velocity to find the average power. The average power is the total work done on the wheel divided by the time interval it takes to do the work. The work done is the change in kinetic energy of the wheel.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top