Rotations of spins and of wavefunctions

wondering12
Messages
17
Reaction score
0
Thread moved from a technical forum, so homework template missing
This is a question regarding the intrinsic angular momentum S of a particle of spin 1.
Assuming S = s(s+1)I = 2I and I is the identity operator. In our case s = 1.
Let |z> be a ket of norm 1 such that Sz |z> = 0, and let |x> and |y> be the ket vectors
obtained from it by rotations of + 1/2 Pi about the y-axis and − 1/2 Pi about the x-axis
respectively. Prove the following relations, as well as those resulting from circular
permutation of x, y, and z:
Sx |x> = 0 , Sx |y> = i|z> , Sxˆ2 |y> = |y> , Sx |z> = −i|y> , Sx2|z> = |z>
Use these to show that |x>, |y>, |y> form an orthonormal basis and that the matrices
representing Sx , Sy and Sz in that basis are:
Sx = \begin{bmatrix}
0 & 0 & 0 \\
0& 0 & -i\\
0&i &0
\end{bmatrix}
Sy = \begin{bmatrix}
0 & 0 & i \\
0& 0 & 0\\
-i&0 &0
\end{bmatrix}
Sz = \begin{bmatrix}
0 & -i & 0 \\
i& 0 & 0\\
0&0 &0
\end{bmatrix}
Show that the eigenvalues of Sz are the same as those of Jz , where Jz is the matrix
representation of the z component of the angular momentum in the |j m> basis, for
j = 1. Then find the most general unitary matrix that transforms
Sz into Jz : U Sz U† = Jz .Choose the arbitrary parameters in U so that it also
transforms Sx into Jx and Sy into Jy .
This problem can be found in Quantum Mechanics by Albert Messiah volume 1 chapter 8 problem 10 part ii and iii.
see attachment.
My humble attempt at the problem,
Used a rotation 3-d matrix for x,y,z or:
Rx = \begin{bmatrix}
1 & 0 & 0 \\
0& cos(a) & -sin(a)\\
0&sin(a) &cos(a)
\end{bmatrix}
Ry = \begin{bmatrix}
cos(a) & 0 & sin(a) \\
0& 1 & 0\\
-sin(a)&0 &cos(a)
\end{bmatrix}
Rz = \begin{bmatrix}
cos(a) & -sin(a & 0 \\
sin(a) &cos(a) & 0\\
0&0 &1
\end{bmatrix}
After that substituting angle for x and y does not give me any meaning to go further. Probably I am starting in a wrong way. Help appreciated.
 

Attachments

  • messiah problem.jpeg
    messiah problem.jpeg
    38.4 KB · Views: 520
Physics news on Phys.org
Those rotation matrices aren't the correct ones for this problem. You need the ones that work on the angular momentum space.
 
vela said:
Those rotation matrices aren't the correct ones for this problem.
Why not? I seem to get the right answer by the unitary transform ##S_x = R_y S_z R_y^{\dagger}##.
 
I think one could also do this problem matrix-less and hence saving lots of space, instead only works with ket notations. For example for the first task to prove ##S_x|x\rangle = 0##, one can use the substitution ##|x\rangle = \exp(-iS_y \pi/2) |z\rangle##. Have tried following this path, unfortunately stuck with the involved algebra. By the way the OP seems to be long absent anyway.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top