(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Suppose [itex]a \in \mathbb{R}[/itex], f is a twice-differentiable real function on (a, \infinty) and M_0,M_1,M_2 are the least upper bound of [itex]|f(x)|,|f'(x)|,|f''(x)|[/itex], respectively on (a,\infinity). Prove that

[tex]M_1^2\leq 4 M_0 M_2[/tex]

2. Relevant equations

3. The attempt at a solution

That is equivalent to showing that M_2 x^2 +M_1 x +M_0=0 has a real solution.

I was trying to use Taylor's Theorem which says that if \alpha and \beta are distinct points in (a,\infinity) then there exists x between \alpha and \beta that makes the following equation true:

[tex]f(\beta) = f(\alpha) + f'(\alpha)(\beta-\alpha) + f''(x) (\beta-\alpha)^2/2[/tex]

I could take the absolute value of both sides and then use triangle inequality but I did not see how to get anywhere with that.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Rudin 5.15

**Physics Forums | Science Articles, Homework Help, Discussion**