Calculate Time Difference: Tim vs. Rick Running and Walking

  • Thread starter Thread starter hieule
  • Start date Start date
  • Tags Tags
    Running
AI Thread Summary
Tim and Rick embark on a journey of distance D, with Tim walking half the time and running the other half, while Rick walks half the distance and runs the other half. The time taken by Tim is calculated as t_T = ((D/2)/v_w) + ((D/2)/v_r), while Rick's time is t_R = 2D/(v_w + v_r). To find the time difference, Delta t, Tim's time must be subtracted from Rick's time, as Tim completes the journey faster. Simplifying the equations involves using the formula for time and recognizing the average speed concept. The key takeaway is to correctly express Delta t in terms of v_r, v_w, and D, ensuring proper algebraic manipulation.
hieule
Messages
5
Reaction score
0
Tim and Rick both can run at speed v_r and walk at speed v_w, with v_r greater than v_w. They set off together on a journey of distance D. Rick walks half of the distance and runs the other half. Tim walks half of the time and runs the other half.

the time it takes tim to cover the distance is:
t_R =((D/2)/v_w)+((D/2)/v_r)

the time it takes rick to cover the distance is:
t_T =2*D/(v_w+v_r)

In terms of given quantities, by what amount of time, Delta t, does Tim beat Rick?
It will help you check your answer if you simplify it algebraically and check the special case v_r = v_w.
Express the difference in time, Delta t in terms of v_r, v_w, and D.

this is an easy problem because all i need to do is take the Rick's time minus Tim's time right? I've done it and my answer is incorrect.
 
Last edited:
Physics news on Phys.org
You would take tim's time minus rick's time since tim takes less time. After that it is just algebra. All you have to do is simplify it.
 
Parth Dave said:
You would take tim's time minus rick's time since tim takes less time. After that it is just algebra. All you have to do is simplify it.


that's my problem. i couldn't simplify it correctly. i simplified it to be

(2D(VwVr)-D/2(Vr+Vw)(Vw+Vr))/((Vw+Vr)(VwVr))
but this is not the answer
 
A. use the formula d=v/t and rearrange it for time to t=d/v, since you have two v values (v_r and v_w), change the equation to t= (d/2vw)+(d/2vr). The two is in there because you multiple the distance by (1/2) which puts the two into the denominator.
B. The average speed is found by rearranging the answer to the above equation to answer for vw+vr, instead of time. You don't have to separate vw+vr when you get it on to the left side.
E. you DO have to subtract tims time from ricks because even though tim finishes first, rick takes LONGER thus a greater value for time. (or time would be negative otherwise)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top