Ryder, QFT 2nd Ed. Page 47, eqn (1.122)

  • Thread starter Thread starter Jimmy Snyder
  • Start date Start date
  • Tags Tags
    Qft
Jimmy Snyder
Messages
1,122
Reaction score
22

Homework Statement


(1 - \frac{i}{2}\mathbf{\sigma\cdot\theta})\mathbf{\sigma}(1 + \frac{i}{2}\mathbf{\sigma\cdot\theta}) = \mathbf{\sigma - \theta\times\sigma}

Homework Equations


The Attempt at a Solution


At one point in this, I temporarily ignore the y and z components. I hope the notation is not too confusing.
(1 - \frac{i}{2}\mathbf{\sigma\cdot\theta})\mathbf{\sigma}(1 + \frac{i}{2}\mathbf{\sigma\cdot\theta}) = \mathbf{\sigma} + \frac{i}{2}(\mathbf{\sigma}(\mathbf{\sigma\cdot\theta}) - (\mathbf{\sigma\cdot\theta})\mathbf{\sigma})
= \mathbf{\sigma} + \frac{i}{2}(\sigma_x(\sigma_x\theta_x + \sigma_y\theta_y + \sigma_z\theta_z) - (\sigma_x\theta_x + \sigma_y\theta_y + \sigma_z\theta_z)\sigma_x) + ()
= \mathbf{\sigma} + \frac{i}{2}(\theta_x + 2i\sigma_z\theta_y - 2i\sigma_y\theta_z) - (\theta_x - 2i\sigma_z\theta_y + 2i\sigma_y\theta_z)) + ()
= \mathbf{\sigma} - 2(\sigma_z\theta_y - \sigma_y\theta_z) + ()
and finally, putting the y and z compenents back in:
(1 - \frac{i}{2}\mathbf{\sigma\cdot\theta})\sigma(1 + \frac{i}{2}\mathbf{\sigma\cdot\theta}) = \mathbf{\sigma - 2\theta\times\sigma}
 
Last edited:
Physics news on Phys.org
\left[ \vec{\sigma}-\frac{i}{2}\left( \vec{\sigma}\cdot \vec{\theta}\right) \vec{\sigma}\right] \left[ 1+\frac{i}{2}\left( \vec{\sigma}\cdot \vec{\theta}\right) \right] =\vec{\sigma}+\frac{i}{2}\vec{\sigma}\left( \vec{\sigma}\cdot \vec{\theta}\right) -\frac{i}{2}\left( \vec{\sigma}\cdot \vec{\theta}\right) \vec{\sigma}+\mathcal{O}\left( \theta ^{2}\right)

=\left[ \sigma _{i}+\frac{i}{2}\left( \sigma _{i}\sigma _{j}-\sigma _{j}\sigma _{i}\right) \theta _{j}\right] \vec{e}_{i}+\mathcal{O}\left( \theta ^{2}\right)=\left( \sigma _{i}+\frac{i}{2}2i\varepsilon _{ijk}\sigma _{k}\theta _{j}\right) \vec{e}_{i}=\vec{\sigma}-\vec{\theta}\times \vec{\sigma}+\mathcal{O}\left( \theta ^{2}\right)

So Ryder was right this time.
 
dextercioby said:
Ryder was right this time.
Thanks dextercioby. I do try hard to solve these matters before I post. It has taken me a month just to get to page 92. I cannot explain what mental blindness caused me to have trouble with this one though.
 
I don't think it's mental blindness; it's just lack of exercise and at some points also the inspiration's missing. Just keep up the good work !
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top