Scalar Plane Equation for Vectors AB and Point P | 3D Cartesian Space

  • Thread starter Thread starter speedycaster
  • Start date Start date
  • Tags Tags
    Planes Vectors
AI Thread Summary
The discussion revolves around finding the scalar equation of a plane in 3D Cartesian space. For the first question, the equation of the plane containing point A and perpendicular to vector AB is derived, with initial attempts yielding x - y + 4z = 13, but corrections suggest it should be x - 4y + 4z = 11. The second question involves obtaining the scalar equation of a plane that passes through point P and contains a specified line, leading to the equation -2x - 2z + 8 = 0. Participants express confusion about the concepts, particularly regarding the conditions for the plane's definition and the calculations involved. Overall, the thread highlights common challenges in understanding plane equations and vector relationships in 3D space.
speedycaster
Messages
3
Reaction score
0

Homework Statement


Question 1.
Given position vectors OA : i+2j-k and OB: 2i+j+3k in a 3D Cartesian space with origin O of the points A and B.

a) Find the scalar equation of the plane which contains A and which is perpendicular to vector AB.

b) Find the shortest distance from the point (1,-1,1) to the plane obtained in a (a)

Homework Equations


The Attempt at a Solution



Here is what i did
(a) Equation of line AB
r= (2,1,3)+ t(1,-1,4)

AP.n = 0
OP.n = OA.n
(x,y,z).(1,-1,4) = (2,1,3).(1,-1,4)

x-y+4z = 13 [equation of plane]?

(b) vector form of plane => r.(1,-1,4) = 13
line equation => r= (1,-1,1) + t(1,-1,4)

Using r=r for both equations i get t= 2/9

Substitute t=2/9 into line equation giving me (11/9, -2/9, 17/9)

I'm stuck here then for part (b)
I'm pretty weak in this chapter, couldn't seem to grab the concept here.

Homework Statement


Question 2.
Obtain the scalar equation of the plane which passes through point P(1,2,3) and contain a straight line
x(t)= 3t
y(t)= 1+t
z(t)= 2-t
t is the parameter of the line

Homework Equations


The Attempt at a Solution



Equation of the line= (0,1,2) + t(3,1,-1)

Let Q and R be the points on the line
t=0 Q=(0,1,2)
t=1 R= (3,2,1)

Therefore PQ= (-1,-1,-1) PR= (2,0,2)

PQxPR= (-2,0,-2)

Thus the equation of the plane
a(x-x1) + b(y-y1) + c(z-z1)= 0
-2(x-1) + 0 -2(z-3) = 0
-2x - 2z + 8 = 0
is this correct?
 
Last edited:
Physics news on Phys.org
speedycaster said:

Homework Statement


Question 1.
Given position vectors OA : i+2j-k and OB: 2i+j+3k in a 3D Cartesian space with origin O of the points A and B.

a) Find the scalar equation of the plane which contains A and which is perpendicular to vector AB.

b) Find the shortest distance from the point (1,-1,1) to the plane obtained in a (a)


Homework Equations





The Attempt at a Solution



Here is what i did
(a) Equation of line AB
r= (2,1,3)+ t(1,-1,4)

AP.n = 0
OP.n = OA.n
(x,y,z).(1,-1,4) = (2,1,3).(1,-1,4)

x-y+4z = 13 [equation of plane]?

You will find that (1,2,-1) doesn't work in that equation so the point is not on the plane.
For R = <x,y,z>, the form on the equation of a plane is

(\vec R - \vec A)\cdot \vec N = 0

The correct equation for the plane might get you started.
 
so what does it mean when it says the plane contains A?

so is it like this?
[(x,y,z)-(1,2,-1)].(1,-4,4)=0

1(x-1)-4(y-2)+4(z+1)=0

x-4y+4z=11
 
Last edited:
speedycaster said:
so what does it mean when it says the plane contains A?

so is it like this?
[(x,y,z)-(1,2,-1)].(1,-4,4)=0

1(x-1)-4(y-2)+4(z+1)=0

x-4y+4z=11

Yes, except check the sign on the 11.
 
I picked up this problem from the Schaum's series book titled "College Mathematics" by Ayres/Schmidt. It is a solved problem in the book. But what surprised me was that the solution to this problem was given in one line without any explanation. I could, therefore, not understand how the given one-line solution was reached. The one-line solution in the book says: The equation is ##x \cos{\omega} +y \sin{\omega} - 5 = 0##, ##\omega## being the parameter. From my side, the only thing I could...
Back
Top