Scattering Cross-Section from a Central Force

CM Longhorns
Messages
7
Reaction score
0

Homework Statement


An object from space (like an asteroid) approaches Earth. A collision will occur if the scattering cross-section is less than π*Re2. If the distance of closest approach is much greater than Re, no collision would occur. Find an implicit expression for the cross-section in terms of g, vo, and Re. Show explicitly that the cross-section approaches the minimum value for large vo, and find the appropriate dimensionless parameter.

g: acceleration due to Earth's gravity
vo: velocity of incoming object
Re: radius of Earth

Homework Equations


Rutherford scattering formula:
dσ/dΩ = k2/16E2*1/sin4(θ/2)

Total energy:
E = ½μr'2 - k/r + L2/2μr2

The Attempt at a Solution


I knew to use the Rutherford scattering formula because the scattering cross-section arises from an inverse square law (the gravitational force.) By doing some manipulation of the force constant:
GMem ≈ g*m
Me + m ≈ Me ⇒ μ ≈ m
and approximating E by the kinetic energy T at very large r:
E ≈ ½mvo2
I arrive at
dσ/dΩ = g^2/4vo2*1/sin4(θ/2)

This is an expression including g, and vo... but where can we relate Earth's radius, Re?

It seems like the differential cross section will approach Re for large vo, but I can't seem to express that mathematically. I'll need help understanding that first part. I could then use hints for finding the impact parameter per the last part of the question.
I'm quite confused at this point.
 
Physics news on Phys.org
The object will hit Earth if its minimal distance is below the radius of earth. For a fixed initial velocity, this corresponds to a certain impact parameter you can calculate.
 
Do I calculate the impact parameter in terms of vo using equations of orbital motion?
 
What else?
If you don't find a direct formula, you can also derive it based on energy and angular momentum conservation.
 
Resolved. I derived it the second way. Thanks
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top