Schwarzschild coordinate time integral

shinobi20
Messages
277
Reaction score
20
Homework Statement
Integrate ##c dt = -\frac{1}{\sqrt{r*}} \frac{r^{3/2} dr}{r - r*}## to find the coordinate time as opposed to the proper time of an object falling into a Schwarzschild black hole.
Relevant Equations
##t## - coordinate time
##r## - radial coordinate
##r^*## - Schwarzschild radius (constant)
I have tried integration by parts where,

##c dt = -\frac{1}{\sqrt{r*}} \frac{r^{3/2} dr}{r - r*} = \frac{1}{\sqrt{(r*)^3}} \frac{r^{3/2} dr}{1 - \Big(\sqrt{\frac{r}{r*}} \Big)^2}##

##u = r^{3/2} \quad \quad dv = \frac{dr}{1 - \Big(\sqrt{\frac{r}{r*}} \Big)^2}##

##du = \frac{3}{2} r^{1/2} dr \quad \quad v = \tanh^{-1} \Big(\sqrt{\frac{r}{r*}} \Big)##

I think this is not the correct route.
 
Last edited:
Physics news on Phys.org
\frac{c\ dt}{r_s}=\frac{x^{3/2}}{1-x}dx=[-x^{1/2}+\frac{x^{1/2}}{1-x}]dx
where ##x=\frac{r}{r_s}## and ##r_s## is Schwartzshild radius.
Integration seems easy.
 
mitochan said:
\frac{c\ dt}{r_s}=\frac{x^{3/2}}{1-x}dx=[-x^{1/2}+\frac{x^{1/2}}{1-x}]dx
where ##x=\frac{r}{r_s}## and ##r_s## is Schwartzshild radius.
Integration seems easy.

How do I integrate ##\frac{x^{1/2}}{1-x}##? I have done integration by parts but I can't find the answer.

*I could just use Mathematica but I want to learn how to deal with this kind of integral by hand.
 
How about x=u^2 dx=2u du ?
 
  • Like
Likes shinobi20
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top