Second Derivative using Implicit Differentiation

Bear_B
Messages
18
Reaction score
0

Homework Statement


Find y''(x) of the parametric equation 9x^2+y^2=9 using implicit differentiation.

Homework Equations


I already came up with y'(x) = -9x/y

The Attempt at a Solution


Here is what I have for y''(x) so far

y''(x) = d/dx (-9xy^-1)
=-9(d/dx)(xy^-1)
=-9(x(d/dx)(y^-1)+(y^-1)(dx/dx))
=-9(-x(y^-2)y'(x)+y^-1)

I substituted the value of y'(x) = -9x/y here

=-9((-x/(y^2))(-9x/y)+(1/y))
=-9((9x^2)/(y^3)+(1/y))
=(-81x^2)/(y^3)-(9/y)

I know this is incorrect, I originally tried this using the quotient rule but was getting the same answer and the work was much more jumbled, so I opted for the product rule.

The book states the answer is -81/(y^3). I am stuck and haven't been able to work towards the right answer.
 
Physics news on Phys.org
Use the quotient rule after you take the first derivative, then look for any possible substitutions that you think might work (& don't be afraid of fractions on fractions on fractions lol).

When you've got it as clean as you can get it (it isn't a messy equation but be careful w/ minus signs) look to see if multiplying the equation (i.e. top & bottom) by a clever choice of 1 will help.

let us know how it goes.
 
You're good so far. Put your result over a common denominator and simplify the top.
 
Ok, I got the answer. The tip on substitution was what really allowed my to break this one open. Since I think this is a great problem that requires a creative strategy (and possibly multiple attempts) to get the simplest answer, I am going to post the rest of my work here.

The result of the Product or Quotient Rule and the substitution for y'(x) yields:

y''(x)=(-9y-((81x^2)/y))/(y^2)

From the original equation, x^2=1-(y^2)/9
I used this value to substitute for x^2.

=(-9y-81((1-(y^2)/9)/(y^2)))/(y^2)

There are a lot of fractions going on, but from here it is just a matter of reducing and simplification.

=(-9y-81(1/y-(y^2)/9y))/(y^2)
=(-9y-81/y+81y/9)/(y^2)
=(-9y-81/y+9y)/(y^2)
=(-81/y)/(y^2)
=-81/y*1/(y^2)
y''(x)=-81/(y^3)

Thanks for the prompt tips. Your feedback helped me solve this problem and find the simplest way to express y''(x).
=
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top