Second order differential equations

dagg3r
Messages
66
Reaction score
0
hi guys need some help on diff eqn, I've done the workingout
and answers but not sure if they are right mind if someone
can check them for me thanks

Find the general solution of the differential equation

dy/dx - 2y = e^(5x)
i found I(x) = e^ integral (-2 dx) = e^(-2x)
as I(x) = e^Integral (p(x)) in this case p=-2
therfore d/dx((e^-2x)*y) = e^(3x) // as we multiply both sides by e^(-2x)

therefore e^(-2x)y = integral e^(3x)
e^(-2x)y = e^(3x)/3 + C
y= e^(3x)/(3*e^(-2x)) + C
y= 1/3e^(5x) + Ce^(2x)



2.


given that z=2xt^3 - cos5x and x^3 + t^2 = 6x
find dz/dt using a chain rule

i will use notatio 9 as the "day symbol"
dz/dt = 9z/9x*dx/dt + dz/dt
= (2t^3 + 5sin5x)*dx/dt + 6xt^2 !(3)!

then knowing
x^3 + t^2 = 6x i diff resp to x so
3x^2*dx/dt - 6dx/dt = -2t
dx/dt = 2t/(3x^2 - 6)

i subtituted this back into (3) and got
= (4t^4 + 10tsin5x + 18x^3t^2 - 36xt^2) / (3x^2-6)


3. given that z=e^(5x)sin2y and y=x^2 + 5
find dz/dx as a function of x using a chain rule

same 9 symbol represtn day

dz/dx=9z/9x + 9z/9y*dy\dx
dz/dx = 5e^(5x)sin2y + 2xe^(5x)cos2y

i subtitued y=x^2 + 5 and got this

dx/dx = e^(5x) * [5sin(2x^2+10) + 2xcos(2x^2 + 10) ]

so i hope i did it right

thanks for the help guys
 
Physics news on Phys.org
dagg3r said:
hi guys need some help on diff eqn, I've done the workingout
and answers but not sure if they are right mind if someone
can check them for me thanks
Find the general solution of the differential equation
dy/dx - 2y = e^(5x)
i found I(x) = e^ integral (-2 dx) = e^(-2x)
as I(x) = e^Integral (p(x)) in this case p=-2
therfore d/dx((e^-2x)*y) = e^(3x) // as we multiply both sides by e^(-2x)
therefore e^(-2x)y = integral e^(3x)
e^(-2x)y = e^(3x)/3 + C
y= e^(3x)/(3*e^(-2x)) + C
y= 1/3e^(5x) + Ce^(2x)
Yes, that's correct.
2.
given that z=2xt^3 - cos5x and x^3 + t^2 = 6x
find dz/dt using a chain rule
i will use notatio 9 as the "day symbol"
dz/dt = 9z/9x*dx/dt + dz/dt
= (2t^3 + 5sin5x)*dx/dt + 6xt^2 !(3)!
then knowing
x^3 + t^2 = 6x i diff resp to x so
3x^2*dx/dt - 6dx/dt = -2t
dx/dt = 2t/(3x^2 - 6)
i subtituted this back into (3) and got
= (4t^4 + 10tsin5x + 18x^3t^2 - 36xt^2) / (3x^2-6)
I think that's right but my feeling is you would be better off leaving it as 6xt^2-(4t^4+ 5sin5x)/(3x^2-6)

3. given that z=e^(5x)sin2y and y=x^2 + 5
find dz/dx as a function of x using a chain rule
same 9 symbol represtn day
dz/dx=9z/9x + 9z/9y*dy\dx
dz/dx = 5e^(5x)sin2y + 2xe^(5x)cos2y
i subtitued y=x^2 + 5 and got this
dx/dx = e^(5x) * [5sin(2x^2+10) + 2xcos(2x^2 + 10) ]
You are missing a factor of 2: The derivative of sin 2y wrt y is 2 cos2y and the derivative of x^2+ 5 is 2x: that should be 4x cos(2x^2+ 10).

so i hope i did it right
thanks for the help guys
Was there a reason for titling this thread "second order differential equations"? There was only one differential equation and it was first order.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top