Second order ODE into a system of first order ODEs

whatisgoingon
Messages
9
Reaction score
0

Homework Statement


The harmonic oscillator's equation of motion is:

x'' + 2βx' + ω02x = f

with the forcing of the form f(t) = f0sin(ωt)

The Attempt at a Solution



So I got:
X1 = x
X1' = x' = X2
X2 = x'
X2' = x''
∴ X2' = -2βX2 - ω02X1 + sin(ωt)

The function f(t) is making me doubt this answer because I have to take into account f0 and it just disappears in the solution.

(For context I have to put it into a system of first order ODEs because I have to code it into python and plot the results with the given parameters.)

Am I on the right track? Or am I missing anything?
 
Physics news on Phys.org
whatisgoingon said:
it just disappears in the solution
Looks to me you made it disappear in the equations already.
 
BvU said:
Looks to me you made it disappear in the equations already.
Oh so I shouldn't have taken it out in the first place then? That makes sense thanks! Other than that, am I missing anything else?
 
Initial conditions ?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top