Second Order Runge Kutta for Simple Harmonic Motion

Abigail1997
Messages
6
Reaction score
0

Homework Statement


The ordinary differential equation describing shm is
d^2x/dt^2=-w^2x
where x is the displacement, t is the time and w is the frequency. If x=0 at t=0, the analytical solution is x=Asin(wt), where A is the amplitude.

1) Rewite equation 1 as two first oder ode's suitable for solution using Runge Kutta Methods
2)Determine the second order runge-kutta solution for this system after the first time step h and show the leading error term in x(h) is proportional to h^3

Homework Equations


k1=hf(xn,yn)
k2=hf(x+h, y+k1)
y_(n+1)=y_n+(1/2)k_1+(1/2)k_2

The Attempt at a Solution


I have completed part 1 and got dx/dt=v and dv/dt=-w^2x but I am unsure how to proceed. The lecturer didn't do a great job of explaining the method and I don't know how to do it when you have two equations and are not given the step size.
 
Physics news on Phys.org
The relate what you got and the equations of the Runge-Kutta algorithm, set ##y_1 \equiv x## and ##y_2 \equiv v##, and remember that
$$
\frac{d y_n}{dt} = f_n
$$
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top