Seeking the solution of an integro-differential equation

  • Thread starter Thread starter Judas503
  • Start date Start date
Judas503
Messages
22
Reaction score
0
I'm seeking the solution to the following integro-differential equation:
$$ \frac{\partial c(x,t)}{\partial t}=-xc(x,t)+2\int_{x}^{\infty} c(y,t)dy$$

I know that to solve this, the Laplace transform must be taken term by term. Let
$$ \mathcal{L}\{c(x,t)\}=\int_{0}^{\infty}e^{-st}c(x,s) $$
Then, $$ \mathcal{L}\{ \frac{\partial c(x,t)}{\partial t} \}=s\mathcal{L}\{c(x,t)\}-c(x,0)$$
and, $$ \mathcal{L}\{xc(x,t)\}=x\mathcal{L}\{c(x,t)\} $$

The problem arises with the Laplace transform of the integral.
\begin{align*}
\mathcal{L}\{ \int_{x}^{\infty}c(y,t)dt \} &= \mathcal{L}\{ \int_{0}^{\infty}c(y,t)dt \}-\mathcal{L}\{ \int_{0}^{x}c(y,t)dt \}
\\&=\mathcal{L}\{ \int_{0}^{\infty}c(y,t)dt \}-\frac{\mathcal{L}\{ c(x,t) \}}{s}
\end{align*}
My question is what do I do with the first integral of the last equation?
 
Physics news on Phys.org
Judas503 said:
I'm seeking the solution to the following integro-differential equation:
$$ \frac{\partial c(x,t)}{\partial t}=-xc(x,t)+2\int_{x}^{\infty} c(y,t)dy$$

I know that to solve this, the Laplace transform must be taken term by term. Let
$$ \mathcal{L}\{c(x,t)\}=\int_{0}^{\infty}e^{-st}c(x,s) $$

This should be
$$ \mathcal{L}\{c(x,t)\}=\int_{0}^{\infty}e^{-st}c(x,t) dt.$$

Then, $$ \mathcal{L}\{ \frac{\partial c(x,t)}{\partial t} \}=s\mathcal{L}\{c(x,t)\}-c(x,0)$$
and, $$ \mathcal{L}\{xc(x,t)\}=x\mathcal{L}\{c(x,t)\} $$

The problem arises with the Laplace transform of the integral.
\begin{align*}
\mathcal{L}\{ \int_{x}^{\infty}c(y,t)dt \} &= \mathcal{L}\{ \int_{0}^{\infty}c(y,t)dt \}-\mathcal{L}\{ \int_{0}^{x}c(y,t)dt \}
\\&=\mathcal{L}\{ \int_{0}^{\infty}c(y,t)dt \}-\frac{\mathcal{L}\{ c(x,t) \}}{s}
\end{align*}
My question is what do I do with the first integral of the last equation?

You've made a mistake in swapping the original integration over the position domain with one over the time domain. If we let ##\mathcal{L}\{c(x,t)\} = C(x,s)##, then
$$\mathcal{L}\{ \int_{x}^{\infty}c(y,t)dy \} = \int_{x}^{\infty}C(y,s)dy.$$
You'll still end up with an integral equation, but without the time derivative. You should be able to differentiate the equation with respect to ##x## to get a first-order differential equation for ##C(x,s)##.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top