Self-Consistency of Sequence of Statements: Which is True?

  • Context: MHB 
  • Thread starter Thread starter TheBigBadBen
  • Start date Start date
  • Tags Tags
    Sequence
Click For Summary
SUMMARY

The discussion centers on the self-consistency of a sequence of statements defined as $S_1$ to $S_n$, where each statement asserts the number of false statements among them. It concludes that a consistent solution exists if and only if $n$ is even. Specifically, for even values of $n$, statements $S_1$ to $S_{n/2}$ are true, while statements $S_{n/2+1}$ to $S_n$ are false. For odd values of $n$, contradictions arise, particularly for $n=1$ and $n=3$.

PREREQUISITES
  • Understanding of logical statements and truth values
  • Familiarity with mathematical induction
  • Basic knowledge of parity in mathematics
  • Ability to analyze paradoxes in logic
NEXT STEPS
  • Study the principles of mathematical induction in detail
  • Explore logical paradoxes, focusing on the Liar Paradox
  • Learn about truth tables and their applications in logic
  • Investigate the implications of even and odd integers in mathematical proofs
USEFUL FOR

Mathematicians, logicians, philosophy students, and anyone interested in the foundations of logical reasoning and paradoxes.

TheBigBadBen
Messages
79
Reaction score
0
Consider the following sequence of statements:
$$
S_1: \text{at least 1 of the statements }S_1-S_n \text{ is false}\\
S_2: \text{at least 2 of the statements }S_1-S_n \text{ are false}\\
\vdots \\
S_n: \text{at least } n \text{ of the statements }S_1-S_n \text{ are false}
$$
Where $n$ is some integer.

Question: for which $n$ are these statements self-consistent? In those cases: what is the truth value of each statement?

I got this off of a blog I tend to frequent. I will wait before posting the solution this time.

EDIT:
Changed the question; I had written the statements wrong
 
Last edited:
Physics news on Phys.org
Suppose $k$ out of $n$ statements are true.
Then $S_1$ up to $S_k$ have to be true and the rest has to be false.
This appears to be consistent for any $n$ and any $0\le k \le n$.
 
I like Serena said:
Suppose $k$ out of $n$ statements are true.
Then $S_1$ up to $S_k$ have to be true and the rest has to be false.
This appears to be consistent for any $n$ and any $0\le k \le n$.

Sorry about that, you were absolutely right about the question as phrased.

However, this new version should prove to be a bit more interesting. This is what I had meant; I had accidentally written "true" instead of "false".
 
If $S_n$ is true, then $n$ statements are false, including $S_n$.
Therefore $S_n$ is false.

We now know that at least $1$ statement is false.
Therefore $S_1$ is true.
For $n=1$ this is a contradiction, and for $n=2$ this is a consistent solution.

For $n \ge 3$ we can say, that if $S_{n-1}$ were true, then $n-1$ statements are false.
Since $S_1$ is true, this implies that $S_{n-1}$ is false.
Therefore $S_{n-1}$ is false.

So at least $2$ statements are false.
Therefore $S_2$ is true.
For $n=3$ this is a contradiction, and for $n=4$ this is a consistent solution.

Etcetera.In other words, we get a consistent consistent solution if and only if $n$ is even.
In that case $S_1$ up to $S_{n/2}$ are true and $S_{n/2+1}$ up to $S_{n}$ are false. $\qquad \blacksquare$
 
I like Serena said:
If $S_n$ is true, then $n$ statements are false, including $S_n$.
Therefore $S_n$ is false.

We now know that at least $1$ statement is false.
Therefore $S_1$ is true.
For $n=1$ this is a contradiction, and for $n=2$ this is a consistent solution.

For $n \ge 3$ we can say, that if $S_{n-1}$ were true, then $n-1$ statements are false.
Since $S_1$ is true, this implies that $S_{n-1}$ is false.
Therefore $S_{n-1}$ is false.

So at least $2$ statements are false.
Therefore $S_2$ is true.
For $n=3$ this is a contradiction, and for $n=4$ this is a consistent solution.

Etcetera.In other words, we get a consistent consistent solution if and only if $n$ is even.
In that case $S_1$ up to $S_{n/2}$ are true and $S_{n/2+1}$ up to $S_{n}$ are false. $\qquad \blacksquare$

Couldn't have phrased it better myself.

The source, for anybody interested:
The Parity Paradox – Futility Closet

I highly recommend the website as a time-wasting tool.
 

Similar threads

  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 27 ·
Replies
27
Views
4K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K