Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Self Creation Cosmology

  1. Jul 19, 2005 #1


    User Avatar
    Science Advisor
    Gold Member

    After an abortive start in the new IR Forum I am beginning a new thread on the published theory of Self Creation Cosmology.
    There has already been many posts on the subject in PF and I apologise for any repetition, but having been asked to post it here in A&C I here make a clean start!
    The published papers are:-
    On Two Self Creation Cosmologies
    A New Self Creation Cosmology
    and here:
    Self Creation Cosmology - An Alternative Gravitational Theory
    Abstract from that most recent paper:
    You may not be able to access these, however there is free access of the last two of these papers on the physics ArXiv and the published work can be recovered from there as follows:
    1. The Principles of Self Creation Cosmology and its Comparison with General Relativity
    2. Experimental tests of the New Self Creation Cosmology and a heterodox prediction for Gravity Probe B
    3. The derivation of the coupling constant in the new Self Creation Cosmology
    4. The Self Creation challenge to the cosmological concordance model
    5. Self Creation Cosmology - An Alternative Gravitational Theory

    The reason why I am posting on PF at all is because I value your informed and constructive criticism. From my Profile you will read: "I am a published independent researcher in cosmology". The key word here is independent it is very difficult to obtain valued and informed criticism if you are no longer in a university department. PF is for me a "physics department coffee lounge" where ideas can be suggested and knocked down or otherwise. I value that.

    Predictions of the Theory

    The theory is completely equivalent to GR in vacuo, therefore all tests to date which compare the geodesics of test particles and photons with observation are concordant with both GR and SCC.

    The cosmological solution requires a homogeneous density; therefore the result differs from GR.

    R(t) ~ t
    k =+1
    A finite but conformally flat model concordant with WMAP CMB anisotropies spectrum. (Not only first peak but also lack of large angle anisotropies)

    [tex]\Omega_m = 2/9[/tex] (0.22)
    [tex]\Omega_ L = 1/9[/tex] (0.11) (false vacuum)
    [tex]\Omega_{total} = 1/3[/tex] (0.33)

    1. GPB Geodetic precession
    SCC: 5.5120 arcsec/yr
    GR: 6.6144 arcsec/yr

    GPB gravitomagnetic frame dragging precession
    SCC = GR = 0.0409 arcsec/yr

    2. LIGO interferometer 8km light path deflected towards the Sun by
    2 x 10-12 metres vertically.
    Also a 'Space Interferometer Experiment' is suggested in my papers that will test the same effect.
    Deviation from the EEP by solid objects; 10cm Aluminium block in vacuo violation of EEP at one part in 10-17, three orders of magnitude smaller than present experimental sensitivity.

    3. Casimir force 'bottoming out' detectable somewhere in the Solar field between the orbits of Jupiter and Saturn.(depending on instrument sensitivity)
    SCC predicts the maximum Casimir force to be a function of space-time curvature.

    4. Pioneer Spacecraft anomalous Sunwards acceleration of
    cH = 6.6 x 10-8 cm/sec2
    5. Earth decrease in day relative ancient solar eclipses (lunar orbit) at rate
    H = 6 x 10-4 secs/day/century.
    NB. Last two may have been already observed.

    The following is an extract from my introduction to the “Comparison of the Mainstream and the Self Creation Freely Coasting models” thread and matches my work with a largely Indian team who have worked on what they call the "Freely Coasting Model (FCM)".

    Introduction to FCM

    The FCM is an empirical model, proposed by a team at the University of Delhi, in which the universe expands strictly linearly with time R[t] ~ t. Its motivation was the realisation that such a model would not require inflation to explain the horizon, flatness or smoothness problems of GR as they would not exist in the first place. It was then realised that the model was surprisingly concordant with cosmological constraints without the further addition of concepts such as DM or DE that remain undiscovered in laboratory physics. There have been several papers published and PhD’s gained exploring this alternative cosmological paradigm, viz:

    1. A coasting cosmology
    2. Freely Coasting Cosmology
    3. A Concordant “Freely Coasting” Cosmology
    4. A case for nucleosynthesis in slowly evolving models
    5. Nucleosynthesis in a Simmering Universe
    and a PhD thesis available on the physics ArXiv:
    However the shortfall of this concordant empirical theory is that
    it requires a mechanism to deliver the strict linear expansion.

    Independently from the Indian team’s work I have developed SCC as an alternative gravitational theory that modifies GR to include a ‘non-minimally connected scalar field’.There are seven papers and eprints that are referred to above.(There have also been 47 other author citations in peer-reviewed journals.)

    Self Creation Cosmology

    The SCC scalar field follows that in the theory of Brans Dicke (BD) and is coupled to the distribution of matter in motion in the universe in order to fully incorporate Mach’s Principle. SCC modifies BD in that it allows the scalar field to act on particles and thus violates the equivalence principle. The presence of the scalar field in BD and SCC perturbs space-time. This is the reason BD is not concordant with solar system experiments. However in SCC the scalar field force operates on particles, but not photons, and corrects this perturbation. The geodesics of test particles and photons are the same in SCC as GR. SCC is concordant with all experiments to date, however there are several tests that easily falsify the theory, which do not test whether trajectories follow GR geodesics . One of these tests is being carried out at present, the Gravity Probe B satellite experiment, and the results will be known next year.

    SCC has two conformal frames of measurement, the Jordan frame in which particle masses increase with gravitational potential energy and in which gravitational trajectories and cosmological evolution are calculated, and the Einstein frame in which particle masses are constant and in which other physics is most easily described.

    The cosmological solution is not in general a vacuum solution, therefore SCC cosmology differs from that of GR. The empty universe solution reduces to the GR Milne model. When the Jordan conformal frame cosmological solution, (which turns out to be the same as Einstein's original cylindrical static model) is transformed into the SCC Einstein conformal frame it turns out to be a strictly linearly expanding solution - that is
    it provides the linear expansion mechanism for the FCM.

    Two differences with the LCDM standard model of GR is that the FCM predicts a baryon density of around 0.2 closure density, in other words there is no need for exotic Dark Matter, and the primordial output of the BB had high metallicity compared to the standard GR BBN. In other words DM does actually exist but originally it was baryonic and only now resides in some dark form. The question for the FCM and the SCC theory is: "In what form is this matter today?"

    One clue is the ubiquitous presence of
    1. re-ionisation in the IGM and
    2. metallicity in early Lyman alpha forests.

    These may be evidence of a fairly isotropic background of PopIII stars that formed at around z = 20. From the paper A very extended re-ionisation epoch? there is also a suggestion that there was a late period of Pop III star re-ionisation that finished at z>=10.5. This would then date the end of such stars, the ‘transition red shift’.

    As a comparison therefore, the active lifetime of Pop III stars in the two models is calculated to be: (Using LCDM values for the GR model)

    For the onset of metallicity, i.e. 'ignition' of Pop III stars, z = 20
    tz=20 = 182 Myrs. in GR
    tz=20 = 657 Myrs. in SCC

    for the transition period, i.e. the end of Pop III stars, z = 10.5
    tz=10.5 = 450 Myrs. in GR
    tz=10.5 = 1.31 Gyrs. in SCC

    Thus the active lifetime of Pop III stars is
    ~270 Myrs in GR and ~650 Myrs in SCC, i.e. over twice as long. Note that if this late re-ionisation period does not in fact exist then the transition period is much earlier and the Pop III lifetimes drastically reduced.

    However how massive are PopIII and how many of them were there? The SCC speculation is that given the primordial gas (PG) had some metallicity
    [Fe/H] = log10(NFe/NH)PG - log10(NFe/NH)Solar = -5
    that the first PopIII stars could be smaller than the standard model allows. Metallicity is important in radiating away heat to allow the proto-stars to collapse. The range ([102 - 104]Msolar) is suggested as they would leave behind IMBHs or the same mass range and this range seems to be concordant with observation. So DM consists of a background of IMBHs in the range [102 - 104]Msolar.

    Will this idea work, that is does the hypothesis that DM consists largely of IMBHs fit observation?

    Last edited: Jul 20, 2005
  2. jcsd
  3. Jul 21, 2005 #2


    User Avatar
    Science Advisor
    Gold Member

    IMBH abundance is not ruled out, but is controversial. A sampler:

    Cosmic Star Formation, Reionization, and Constraints on Global Chemical Evolution

    Intermediate-Mass Black Holes in the Universe: A Review of Formation Theories and Observational Constraints

    Constraints on primordial black holes and primeval density perturbations from the epoch of reionization

    Constraints on the mass and abundance of black holes in the Galactic halo: the high mass limit

    Constraints on massive black holes as dark matter candidates using Galactic globular clusters
  4. Jul 21, 2005 #3


    User Avatar
    Science Advisor
    Gold Member

    Thank you Chronos for those interesting links, I wonder whether IMBHs have not already been detected and mis-identified as MACHO's POINT-AGAPE Pixel Lensing Survey of M31 : Evidence for a MACHO contribution to Galactic Halos.

    The main controversy in accepting IMBHs as the major component of DM is mainstream BBN constrains [tex]\Omega_{baryon} = 0.04[/tex]. My question is: if this limitation is lifted (by the FCM BBN) could the DM identification problem be solved?

    Note: in my thread "Submitted Research: Self Creation Cosmology, by Garth" in the IR Forum ZapperZ rather cynically asked:
    My answer, which I never posted in that thread, was that yes there are some such as yourself Chronos, and others such as the 'Mentors', who have made constructive comments and criticisms of my work. One of the greatest contributions has been in providing such relevant links to physics ArXiv papers, and other academic web pages, as yours above, which enable me to keep up to date with a multitude of developments that otherwise I might well have missed. Thank you.

    Last edited: Jul 21, 2005
  5. Jul 21, 2005 #4


    User Avatar
    Science Advisor
    Gold Member

    I think Zz has a point [albeit a little pessimistic], but any kind of reasonably informed feedback would seem better than nothing [not to mention we work pretty cheap]. Anyways, I have another recent selection that might be of interest:

    Title: Heavy Element Production in Inhomogeneous Big Bang Nucleosynthesis
  6. Nov 7, 2005 #5


    User Avatar
    Science Advisor
    Gold Member

    Retraction and correction of Self Creation Cosmology GP-B prediction

    Since publishing my 2002 paper I have been pleased to discover that the Gravity Probe B satellite appeared to provide a test that could falsify SCC. Earlier I repeated the prediction in this thread.
    The SCC prediction is more complicated than the GR calculation as freely orbiting bodies have an extra, Newtonian-like, scalar field force acting on them (but not on photons). Over the years I have worried that I may not have included all the extra factors complicating the calculation.

    In all other solar system experiments the scalar field force exactly compensated for the perturbation of space-time curvature from the GR value. I worried that this did not appear to happen in the case of geodetic precession.

    Today, to my dismay, I have realised that my geodetic calculation does not include the Thomas precession on the GP-B gyroscopes properly.

    When the effect of the Thomas precession, due to the scalar field force accelerating the gyroscopes, is taken into account the SCC geodetic precession is equal to that of GR

    So the above prediction should read:
    1. GPB Geodetic precession
    SCC = GR = 6.6144 arcsec/yr
    GPB gravitomagnetic frame dragging precession
    SCC = GR = 0.0409 arcsec/yr

    Falsification of SCC will now depend on somebody performing the definitive test, which is photons are predicted to 'fall' at a rate 3/2 that of particles.

    A horizontal laser such as the LIGO interferometers, compared to the Earth, should be perturbed towards the Sun. With a 8 km light path the perturbation is predicted to be 2 x 10-12 metres.

    I will be publishing this correction shortly.

    Last edited: Nov 7, 2005
  7. Nov 8, 2005 #6


    User Avatar
    Gold Member

    Does SCC envision any refractive effect to produce this discrepant infall rate? If not, how do you model a gravitational force that manages to affect massless photons 50% more efficiently than massive particles?
  8. Nov 9, 2005 #7


    User Avatar
    Science Advisor
    Gold Member

    This is at the heart of SCC and why the split laser beam interferometer would be a definitive test; if photons do fall at the same rate as particles then SCC is dead in the water, there would be no resurrection, SCC would then simply be another of the invariant conformal gravity theories that have only re-writen GR in some inconvenient coordinate system.

    In Brans Dicke an extra scalar field is introduced that is coupled to the trace of the stress-energy-momentum tensor (matter) by a coupling constant [itex]\lambda[/itex]. Its presence perturbs the curvature of space-time and consequently BD is only concordant with solar system experiements if [itex]\lambda[/itex] is vanishingly small. This has led to its demise.

    SCC introduces a principle of mutual interaction (PMI), which states that the scalar field is a source for the matter-energy field if and only if the matter-energy field is a source for the scalar field, by coupling

    [tex]\nabla _\mu T_{M\quad \nu }^{\quad\mu }[/tex] to [tex]T_M[/tex], thus:

    \nabla _\mu T_{M\;\nu }^{.\;\mu }=f_\nu \left( \phi \right) \Box \phi =4\pi
    f_\nu \left( \phi \right) T_{M\;}^{\;}\text{ ,} \notag \end{equation}[/tex]

    so that for an electro-magnetic field, which is trace-free,

    [tex]T_{em} =0[/tex],

    \nabla _\mu T_{em\quad \nu }^{\quad \mu }=4\pi f_\nu \left( \phi \right)
    T_{em}^{\;}=4\pi f_\nu \left( \phi \right) \left( 3p_{em}-\rho _{em}\right)=0 \notag

    Photons thus travel on null-geodesics, whereas particles do not.

    A remarkable feature of the PMI violation of the equivalence principle is that this ’scalar field force’ acts in a similar fashion to the gravitational force. It is proportional to the product of the masses of two freely falling bodies and inversely proportional to the square of their separation. Thus, if this force exists, it would be convoluted with the Newtonian gravitational force and affect the value of the Newtonian gravitational constant in all Cavendish type experiments.

    Eotvos-type experiments, asking whether, "atoms all fall at the same rate", which tests the equivalence principle for different types of matter, would only find a violation at the 10-17 level, three orders of magnitude smaller than present experimental sensitivity. (Such violation depending on
    [tex]\frac{p}{\rho c^2}[/tex] for the materials being studied.)

    The scalar field thus exerts an extra force, which acts on freely-falling ,particles but not photons, that perturbs them from their geodesic trajectories. It works out that this scalar-field force exactly compensates for the perturbation of space-time by the BD scalar field. Particles and photons both travel along the geodesics and null-geodesics of GR, the theory is conformally equivalent to canonical GR in vacuo, and thus all experiments (including now the GP-B geodetic measurement) that verify GR also verify SCC.

    The crucial difference is the direct measurement of the rate of acceleration of photons and particles in a gravitational field; an extension of the Eotvos experiments: "Do particles and photons 'fall at the same rate'?

    Last edited: Nov 9, 2005
  9. Dec 14, 2005 #8


    User Avatar
    Science Advisor
    Gold Member

    Retraction of the Retraction : Self Creation Cosmology GP-B prediction

    Retraction of the Retraction!!

    GP-B is back as a resolution of the degeneracy between SCC and GR!!

    As I said above the geodetic precession (SCC precession = 5/6 GR precession) has to be corrected in SCC by a Thomas precession. (that caused by the acceleration of a spin-axis in 4-space)

    The Thomas precession for SCC is 1/6 the GR geodetic precession, so above I worried that the total N-S GP-B precession rate was going to be (5/6 + 1/6) GR geodetic precession = GR = 6.6"/yr. and if GP-B returned that value, as everybody expects, then SCC would be lost in the dust!

    However after a careful analysis I have realised that the Thomas precession has to be subtracted from the geodetic and so the SCC prediction is:

    (5/6 - 1/6)GR geodetic precession = 2/3 = 4.4096"/yr and we are back in business as soon as I have time to publish the correction.

    So the above prediction should now read:
    1. GPB Geodetic precession
    SCC = 4.4096 arcsec/yr
    GR = 6.6144 arcsec/yr

    GPB gravitomagnetic frame dragging precession
    SCC = GR = 0.0409 arcsec/yr

    We wait and see! :smile:
  10. Dec 15, 2005 #9


    User Avatar
    Science Advisor
    Gold Member

    Your model will fail for devious reasons, Garth. Look at the way they will apply corrections to GPB results. They will cancel out the very effects you are looking for. What I'm saying is you need the raw data to apply your model. Does that make any sense? You have a lot of work to do!
  11. Dec 15, 2005 #10


    User Avatar
    Science Advisor
    Gold Member

    Thank you Chronos for your comment.

    The GP-B team are being very careful not to prejudge the issue, that is why the experiment's two sets of data are being kept separate.

    The angular displacements of the gyros have to be related to the satellite telescope’s initial position, rather than its final position directed towards IM Pegasi.

    The motion of IM Pegasi with respect to a distant quasar has been measured with extreme precision over a number of years using Very Long Baseline Interferometry (VLBI) by a team at the Harvard-Smithsonian Center for Astrophysics (CfA).

    However, to ensure the integrity of the GP-B experiment, a ”blind” component was added to the data analysis by insisting that the CfA withhold the proper motion data until the rest of the data analysis is complete.

    I trust the team to be objective in their analysis, whatever their result may be. If my model fails because it really has been falsified by experimental observation, then so be it, at least it has had the strength to be falsifiable!

    Last edited: Dec 15, 2005
  12. Dec 16, 2005 #11


    User Avatar
    Science Advisor
    Gold Member

    May I toss you another bone, Garth? I like the way you think, so I'm always on the lookout things like this:

    You Can't Get There From Here: Hubble Relaxation in the Local Volume
  13. Dec 16, 2005 #12


    User Avatar
    Science Advisor
    Gold Member

    Yes I had seen it, the bone for me to chew on is the statement:
    SCC predicts far more baryonic matter (all DM) than the standard model, perhaps this observation is picking it up?

  14. Dec 17, 2005 #13


    User Avatar
    Science Advisor
    Gold Member

    That's pretty much why I culled that one out for your viewing pleasure, Garth! SCC has some interesting implications. I would like to think I'm not oblivious to them. Besides, I'd like to be remembered as the guy who stood up for you before you became famous! And if not, at least we drank wine together while proseletizing.
  15. Dec 17, 2005 #14


    User Avatar
    Science Advisor
    Gold Member

    I'll drink to that!

  16. Jan 2, 2006 #15


    User Avatar
    Science Advisor
    Gold Member

    Looking further into DM in the SCC scenario I wish to draw across a link from the Addressing Impossibilities in the Standard Cosmological Model thread.

    The question in hand is that in SCC the overall desnity parameter
    [itex]\Omega_{Total} = 0.33[/itex]
    of which one third is false vacuum energy
    [itex]\Omega_{False Vacuum} = 0.11[/itex]
    (This false vacuum energy is detected by the Casimir force. The theory predicts that the Casimir force is limited with a maximum determined by the gravitational potential [itex]\frac{GM}{rc^2}[/itex]. The limit being detectable somewhere between the orbits of Jupiter and Saturn with present sensitivities.)

    This leaves a residue of [itex]\Omega_{residue} = 0.22[/itex]

    Nucleosynthesis in SCC is to be calculated in the Einstein conformal frame in which atomic masses are constant. In this frame the universe expands strictly linearly, it is a Freely Coasting Model (FCM).

    Now, the FCM model predicts a BBN baryonic density of about
    [itex]\Omega_{baryon} = 0.2[/itex]
    which ties in nicely with the SCC prediction, as there is the odd 1% or so of neutrino density to include, together with other possible as yet undiscovered particle species.

    The question is in what form is this baryonic material now to be found?

    One possibility is that it resides in a population of IMBHs of around (102 - 104)MSolar.

    A scenario thus presents itself: Out of the BB and close on the epoch of combination at the CMB Surface of Last Scattering many large PopIII stars form in the mass range ~ (102 - 104)MSolar. (SCC primordial metallicity is not zero as in the standard model but about [-5] (i.e. ~ 10-5 Solar) so these PopIII stars can form with smaller masses and more numerously than in the standard scenario.) After a short time < 106 years, these stars go hyper-nova (thus producing long-GRBs) and leave behind IMBHs of about half the progenitor's mass.

    One question with this scenario was what about the ejected material that was not drawn into the IMBH?

    Although PopIII stellar evolution is very hazy, virial arguments might suggest that half the mass is drawn into the IMBH and about half ejected. So, unless this ejected material went on to form further giant stars and further BHs there should be a lot of it left behind.

    SpaceTiger's link in the other thread to Measured Cosmological Mass Density in the WHIM: the Solution to the 'Missing Baryons' Problem provides an answer: it is WHIM!

    [O/H] is needed; now in Table 1 they state at:
    z = 0.011 [O/H] > -1.47 and at
    z = 0.027 [O/H] > -1.32,
    so the upper limit is:
    [itex]\Omega_b[/itex]WHIM > 4.3 × 100.47 % = 12.6%
    and the lower limit:
    [itex]\Omega_b[/itex]WHIM > 1.3 × 100.32 % = 2.7%?

    Which is indeed consistent with the standard model of about [itex]\Omega_b[/itex] = 0.04, but also with a much higher [itex]\Omega_{WHIM}[/itex] allowed by the FCM BBN.

    The residue density in SCC now appears to be made up of:
    [itex]\Omega[/itex]Observed galactic matter = 0.003
    [itex]\Omega[/itex]WHIM ~ 0.1
    [itex]\Omega[/itex]IMBH ~ 0.1
    [itex]\Omega[/itex]Neutrinos, other matter, etc. = 0.017
    Total: [itex]\Omega_{residue} = 0.22[/itex]

    Of course the numbers can be played about with a bit, the ratio of WHIM/IMBH being most plastic!

    Last edited: Jan 2, 2006
  17. Jan 2, 2006 #16


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    So your model does require a sort of dark matter, does it not? You were forced to include an ad hoc term of [itex]\Omega[/itex]IMBH ~ 0.1 in order to put your number into concordance with your model's prediction. Such a population of black holes, although possible, is certainly not expected in a naive cosmological model. Why is this less ad hoc than weakly-interacting particles?

    In addition, what you call the "false vacuum energy":

    [itex]\Omega[/itex]False Vacuum ~ 0.11

    is really a form of dark energy, is it not? And does it not fall victim to the same fine-tuning problem as the cosmological constant of the standard cosmological model?
  18. Jan 2, 2006 #17


    User Avatar
    Science Advisor
    Gold Member

    ST Thank you for your important questions, let me take them one by one.
    Yes, I have always said the model requires dark matter, the difference though between SCC and GR is that this is baryonic dark matter.

    All the gravitational theory actually predicts is that
    [itex]\Omega[/itex]Matter = 0.22, as the observed matter is much smaller than this the question SCC leaves unanswered is in what form this dark matter might be. The answer to this secondary question comes in several parts.

    First is the Indian team's work on the FCM model, which quite independently found [itex]\Omega[/itex]baryon ~ 0.2, thus the DM is baryonic in this model, and also allows a little leeway for the neutrino density to be squeezed in.

    The second part was your acknowledgement that IMBH's would fit the bill, except that in the mainstream model it is constrained by BBN
    [itex]\Omega[/itex]baryon = 0.04. However in SCC without this constraint I was at a loss to explain why the IMBH formation efficiency was almost 100%.

    The third part, your last link for me, answered that latter question; the IMBH formation rate need not be 100%; 50% IMBH and the remainder as WHIM was consistent with observation. Also a 50/50 IMBH/ejected-gas model makes good sense in a 'hand waving' sort of way. (My arms are going like windmills at the present!)

    Thank you!
    Astrophysics is the science of understanding what goes on
    'up there' (astro-) by understanding what goes on 'down here', in the lab, (-physics). Cosmology applies this understanding to the largest possible observable scales. Up to the 1970's it did a good job, the cosmological theory, GR, having been well established in laboratory and solar system experiments. However that relationship between cosmological theory and laboratory science began to change with the intoduction of Inflation, then DM then DE, which were introduced a posteriori to make the model fit without laboratory confirmation (yet?).

    The false vacuum energy density is predicted by SCC in the local vicinity and is discovered in the laboratory as the Casimir force. The spherically symmetric solution is over determined in the theory yielding two separate solutions, but in flat space both solutions converge. However, they slightly diverge in the presence of space-time curvature and require a precise small false vacuum energy for consistency. This prediction may be tested if an experiment measuring the Casimir force is launched into the trans-Saturian solar gravitational field. This false vacuum energy requirement in the cosmological solution yields the [itex]\Omega[/itex]false vacuum = 0.11. This is a predicted value by the cosmological equations (see A New Self Creation Cosmology) and is not fine tuned to fit.

    Please continue to provide constructive criticism, I value your comments a lot.

    Last edited: Jan 2, 2006
  19. Jan 3, 2006 #18


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    Fair enough, but I'm not sure you've answered my question. Why is this less ad hoc than non-baryonic dark matter? It's much easier for mainstream physics to explain a weakly interacting and abundant particle species than a population of intermediate mass black holes that makes up 10% of the closure density. How do you envision them being formed?

    Two things. First, I don't understand how you're distinguishing this from the traditional quantum explanation for the cosmological constant. In fact, as far as I can tell, your [tex]\Omega_{False Vacuum}[/tex] is equivalent to [tex]\Omega_{\Lambda}[/tex] from the quantum point of view. I understand that your theory of gravity is different, but you seem to be invoking the same source for the "dark energy" as in the most popular mainstream models.

    Second, measurements of the Casimir Force tell us about the existence of the vacuum energy, but they tell us nothing of its magnitude. A measurement of a "force" is basically a measurement of dE/dx, not of E0. It's the latter that you need to constrain [tex]\Omega_{False Vacuum}[/tex].

    The fine-tuning problem comes from the quantum end of things, not the cosmological end. You may be thinking of the less severe "cosmic coincidence problem", which asks why the cosmological constant would suddenly be turning on at this moment in cosmic history. For more information on the fine-tuning and cosmic coincidence problem, check out this paper:

    The Cosmological Constant Problem and Quintessence
  20. Jan 3, 2006 #19


    User Avatar
    Science Advisor
    Gold Member

    Only in that it does not require the invocation of an unknown/undetected species of fundamental particle.
    From a dense ensemble of moderate mass (102 - 103 MSolar)PopIII stars, which also give rise to ionisation and (enhanced) metallicity in the early universe.
    There is a subtle distinction between the cosmological constant on the left hand side of the GR field equation, which describes space-time curvature, and the false vacuum on the right hand side of the FE, which is entered as its density and pressure is a source of gravitation. One is the source (RHS) the other is the effect (LHS). This distinction is often blurred and confused because the 'equation of states' of the cosmological constant and false vacuum energy are almost identical, differing by the amount [itex]g_{\mu \nu}[/itex] differs from [itex]\eta_{\mu \nu}[/itex], (although the equations of state are exactly identical in one quantum loop vacuum fluctuation.)

    The local and tested Schwarzschild solution of GR has nothing to say of vacuum energy, in GR vacuum is simply that, empty vacuum of zero density and pressure. However the modern cosmological solution has to include a 'false vacuum' energy of some sort to 'balance the books', and of course it is also has the advantage of including quantum effects.

    In SCC the local spherically symmetric solution requires the existence of a moderate false vacuum energy density for consistency. This is detectable, as the Casimir force, and makes a falsifiable prediction in the far solar system Casimir experiment proposed. It was not therefore a surprise when it then also cropped up in the cosmological solution. See my definition of astrophysical cosmology in my earlier post above.
    Agreed, but SCC suggests that there is a natural renormalised 'cut-off' Emax determined, and therefore limited by, the field equations of the gravitational theory. In the cosmological solution this resolves the 'Lambda problem'.

    It is the cut-off, detected as a rounding off at the maximum Casimir force as two plates are brought arbitrarily close together, which measures the vacuum energy density.

    The false vacuum density [itex]\rho = -p_{max} [/itex].
    The pressure, Casimir force/plate area, is given by
    [tex]p_{max} = \frac{F}{A} = -(\frac{\pi hc}{480})z^{-4}[/tex]
    where z is the plate separation at maximum Casimir force.

    SCC suggests this density and hence maximum Casimir pressure is limited, the standard theory says it is (almost) infinite, a difference that can be resolved experimentally. (As I have said, with present experimental sensitivity the round off should be detected in the Solar field between the orbits of Jupiter and Saturn.)
    Yes that is a fine paper, thank you. However my comment on 'fine tuning' was simply responding to your question:"does it (SCC) not fall victim to the same fine-tuning problem as the cosmological constant of the standard cosmological model?" As I said [tex]\Omega_{False Vacuum} = 0.11[/tex] is determined by the field equation and not a free parameter that is adjusted to fit observations.

    Last edited: Jan 3, 2006
  21. Jan 3, 2006 #20


    User Avatar
    Staff Emeritus
    Science Advisor
    Gold Member

    It appears to require the existence of a much less plausible population of objects!

    So your model requires that for every solar mass of material that went into low-mass stars (<~ 1 solar mass) in the early universe, roughly one hundred solar masses went into IMBHs? This requires both an extremely top-heavy mass function and an extremely large star formation efficiency. Do you have any references that even suggest that such a thing might be possible? To my knowledge, it's difficult to even form structure in a purely baryonic universe. Dark matter halos act as seeds for the formation of galaxies and clusters.

    So, if I'm understanding you correctly, the difference is not that your model doesn't include dark energy, it's that your model requires it to survive. I suppose this can be viewed as a benefit, but it's a bit deceptive to say that you don't need dark energy.

    So, to be clear, you're not just modifying gravity, but predicting a low high-energy cutoff for QED (and other QFTs) as well? And the value of this cutoff depends upon the local gravitational potential? The paper I linked addresses the issue of introducing a UV cutoff (Emax) to existing theory:

    In other words, the simple cutoff you propose appears to be unphysical from the particle physics point of view. Could you elaborate on how SCC changes this fact? Is it more than a theory of gravity?
    Last edited: Jan 3, 2006
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Self Creation Cosmology
  1. Particle creation (Replies: 9)

  2. Creation of matter (Replies: 9)

  3. Creation of matter (Replies: 2)